Probabilistic cytoarchitectonic map of Area 4a (PreCG) (v13.1)

This dataset contains the distinct architectonic Area 4a (PreCG) in the individual, single subject template of the MNI Colin 27 as well as the MNI ICBM 152 2009c nonlinear asymmetric reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using cytoarchitectonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Geyer, S., Ledberg, A., Schleicher, A., Kinomura, S., Schormann, T., Bürgel, U., Klingberg, T., Larsson, J., Zilles, K., Roland, P.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Geyer, S.
Ledberg, A.
Schleicher, A.
Kinomura, S.
Schormann, T.
Bürgel, U.
Klingberg, T.
Larsson, J.
Zilles, K.
Roland, P.
description This dataset contains the distinct architectonic Area 4a (PreCG) in the individual, single subject template of the MNI Colin 27 as well as the MNI ICBM 152 2009c nonlinear asymmetric reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using cytoarchitectonic analysis on cell-body-stained histological sections of 10 human postmortem brains obtained from the body donor program of the University of Düsseldorf. The results of the cytoarchitectonic analysis were then mapped to both reference spaces, where each voxel was assigned the probability to belong to Area 4a (PreCG). The probability map of Area 4a (PreCG) are provided in the NifTi format for each brain reference space and hemisphere. The Julich-Brain atlas relies on a modular, flexible and adaptive framework containing workflows to create the probabilistic brain maps for these structures. Note that methodological improvements and integration of new brain structures may lead to small deviations in earlier released datasets. Other available data versions of Area 4a (PreCG): Geyer et al. (2018) [Data set, v9.2] [DOI: 10.25493/5GXC-Z2U](https://doi.org/10.25493%2F5GXC-Z2U) Geyer et al. (2019) [Data set, v9.4] [DOI: 10.25493/PVPP-P3Q](https://doi.org/10.25493%2FPVPP-P3Q) Geyer et al. (2020) [Data set, v11.0] [DOI: 10.25493/T9VH-A00](https://doi.org/10.25493%2FT9VH-A00) The most probable delineation of Area 4a (PreCG) derived from the calculation of a maximum probability map of all currently released Julich-Brain brain structures can be found here: Amunts et al. (2019) [Data set, v1.13] [DOI: 10.25493/Q3ZS-NV6](https://doi.org/10.25493%2FQ3ZS-NV6) Amunts et al. (2019) [Data set, v1.18] [DOI: 10.25493/8EGG-ZAR](https://doi.org/10.25493%2F8EGG-ZAR) Amunts et al. (2020) [Data set, v2.2] [DOI: 10.25493/TAKY-64D](https://doi.org/10.25493%2FTAKY-64D) Amunts et al. (2020) [Data set, v2.4] [DOI: 10.25493/A7Y0-NX9](https://doi.org/10.25493%2FA7Y0-NX9) Amunts et al. (2020) [Data set, v2.5] [DOI: 10.25493/8JKE-M53](https://doi.org/10.25493/8JKE-M53) Amunts et al. (2021) [Data set, v2.6] [DOI: 10.25493/KJQN-AM0](https://doi.org/10.25493%2FKJQN-AM0) Amunts et al. (2021) [Data set, v2.9] [DOI: 10.25493/VSMK-H94](https://doi.org/10.25493/VSMK-H94)
doi_str_mv 10.25493/7ak1-pfq
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_25493_7ak1_pfq</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_25493_7ak1_pfq</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_25493_7ak1_pfq3</originalsourceid><addsrcrecordid>eNpjYBA0NNAzMjWxNNY3T8w21C1IK-RksAsoyk9KTMrMySwuyUxWSK4syU8sSs7ILElNLsnPA4rkJhYo5KcpOBalJiqYJCpoBBSlOrtrKmiUGRrrGWryMLCmJeYUp_JCaW4GTTfXEGcP3ZTEksRkoCnxBUWZuYlFlfGGBvFgu-NBdscD7TYmRS0AANE58A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Probabilistic cytoarchitectonic map of Area 4a (PreCG) (v13.1)</title><source>DataCite</source><creator>Geyer, S. ; Ledberg, A. ; Schleicher, A. ; Kinomura, S. ; Schormann, T. ; Bürgel, U. ; Klingberg, T. ; Larsson, J. ; Zilles, K. ; Roland, P.</creator><creatorcontrib>Geyer, S. ; Ledberg, A. ; Schleicher, A. ; Kinomura, S. ; Schormann, T. ; Bürgel, U. ; Klingberg, T. ; Larsson, J. ; Zilles, K. ; Roland, P.</creatorcontrib><description>This dataset contains the distinct architectonic Area 4a (PreCG) in the individual, single subject template of the MNI Colin 27 as well as the MNI ICBM 152 2009c nonlinear asymmetric reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using cytoarchitectonic analysis on cell-body-stained histological sections of 10 human postmortem brains obtained from the body donor program of the University of Düsseldorf. The results of the cytoarchitectonic analysis were then mapped to both reference spaces, where each voxel was assigned the probability to belong to Area 4a (PreCG). The probability map of Area 4a (PreCG) are provided in the NifTi format for each brain reference space and hemisphere. The Julich-Brain atlas relies on a modular, flexible and adaptive framework containing workflows to create the probabilistic brain maps for these structures. Note that methodological improvements and integration of new brain structures may lead to small deviations in earlier released datasets. Other available data versions of Area 4a (PreCG): Geyer et al. (2018) [Data set, v9.2] [DOI: 10.25493/5GXC-Z2U](https://doi.org/10.25493%2F5GXC-Z2U) Geyer et al. (2019) [Data set, v9.4] [DOI: 10.25493/PVPP-P3Q](https://doi.org/10.25493%2FPVPP-P3Q) Geyer et al. (2020) [Data set, v11.0] [DOI: 10.25493/T9VH-A00](https://doi.org/10.25493%2FT9VH-A00) The most probable delineation of Area 4a (PreCG) derived from the calculation of a maximum probability map of all currently released Julich-Brain brain structures can be found here: Amunts et al. (2019) [Data set, v1.13] [DOI: 10.25493/Q3ZS-NV6](https://doi.org/10.25493%2FQ3ZS-NV6) Amunts et al. (2019) [Data set, v1.18] [DOI: 10.25493/8EGG-ZAR](https://doi.org/10.25493%2F8EGG-ZAR) Amunts et al. (2020) [Data set, v2.2] [DOI: 10.25493/TAKY-64D](https://doi.org/10.25493%2FTAKY-64D) Amunts et al. (2020) [Data set, v2.4] [DOI: 10.25493/A7Y0-NX9](https://doi.org/10.25493%2FA7Y0-NX9) Amunts et al. (2020) [Data set, v2.5] [DOI: 10.25493/8JKE-M53](https://doi.org/10.25493/8JKE-M53) Amunts et al. (2021) [Data set, v2.6] [DOI: 10.25493/KJQN-AM0](https://doi.org/10.25493%2FKJQN-AM0) Amunts et al. (2021) [Data set, v2.9] [DOI: 10.25493/VSMK-H94](https://doi.org/10.25493/VSMK-H94)</description><identifier>DOI: 10.25493/7ak1-pfq</identifier><language>eng</language><publisher>EBRAINS</publisher><subject>Neuroscience</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.25493/7ak1-pfq$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Geyer, S.</creatorcontrib><creatorcontrib>Ledberg, A.</creatorcontrib><creatorcontrib>Schleicher, A.</creatorcontrib><creatorcontrib>Kinomura, S.</creatorcontrib><creatorcontrib>Schormann, T.</creatorcontrib><creatorcontrib>Bürgel, U.</creatorcontrib><creatorcontrib>Klingberg, T.</creatorcontrib><creatorcontrib>Larsson, J.</creatorcontrib><creatorcontrib>Zilles, K.</creatorcontrib><creatorcontrib>Roland, P.</creatorcontrib><title>Probabilistic cytoarchitectonic map of Area 4a (PreCG) (v13.1)</title><description>This dataset contains the distinct architectonic Area 4a (PreCG) in the individual, single subject template of the MNI Colin 27 as well as the MNI ICBM 152 2009c nonlinear asymmetric reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using cytoarchitectonic analysis on cell-body-stained histological sections of 10 human postmortem brains obtained from the body donor program of the University of Düsseldorf. The results of the cytoarchitectonic analysis were then mapped to both reference spaces, where each voxel was assigned the probability to belong to Area 4a (PreCG). The probability map of Area 4a (PreCG) are provided in the NifTi format for each brain reference space and hemisphere. The Julich-Brain atlas relies on a modular, flexible and adaptive framework containing workflows to create the probabilistic brain maps for these structures. Note that methodological improvements and integration of new brain structures may lead to small deviations in earlier released datasets. Other available data versions of Area 4a (PreCG): Geyer et al. (2018) [Data set, v9.2] [DOI: 10.25493/5GXC-Z2U](https://doi.org/10.25493%2F5GXC-Z2U) Geyer et al. (2019) [Data set, v9.4] [DOI: 10.25493/PVPP-P3Q](https://doi.org/10.25493%2FPVPP-P3Q) Geyer et al. (2020) [Data set, v11.0] [DOI: 10.25493/T9VH-A00](https://doi.org/10.25493%2FT9VH-A00) The most probable delineation of Area 4a (PreCG) derived from the calculation of a maximum probability map of all currently released Julich-Brain brain structures can be found here: Amunts et al. (2019) [Data set, v1.13] [DOI: 10.25493/Q3ZS-NV6](https://doi.org/10.25493%2FQ3ZS-NV6) Amunts et al. (2019) [Data set, v1.18] [DOI: 10.25493/8EGG-ZAR](https://doi.org/10.25493%2F8EGG-ZAR) Amunts et al. (2020) [Data set, v2.2] [DOI: 10.25493/TAKY-64D](https://doi.org/10.25493%2FTAKY-64D) Amunts et al. (2020) [Data set, v2.4] [DOI: 10.25493/A7Y0-NX9](https://doi.org/10.25493%2FA7Y0-NX9) Amunts et al. (2020) [Data set, v2.5] [DOI: 10.25493/8JKE-M53](https://doi.org/10.25493/8JKE-M53) Amunts et al. (2021) [Data set, v2.6] [DOI: 10.25493/KJQN-AM0](https://doi.org/10.25493%2FKJQN-AM0) Amunts et al. (2021) [Data set, v2.9] [DOI: 10.25493/VSMK-H94](https://doi.org/10.25493/VSMK-H94)</description><subject>Neuroscience</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA0NNAzMjWxNNY3T8w21C1IK-RksAsoyk9KTMrMySwuyUxWSK4syU8sSs7ILElNLsnPA4rkJhYo5KcpOBalJiqYJCpoBBSlOrtrKmiUGRrrGWryMLCmJeYUp_JCaW4GTTfXEGcP3ZTEksRkoCnxBUWZuYlFlfGGBvFgu-NBdscD7TYmRS0AANE58A</recordid><startdate>20210731</startdate><enddate>20210731</enddate><creator>Geyer, S.</creator><creator>Ledberg, A.</creator><creator>Schleicher, A.</creator><creator>Kinomura, S.</creator><creator>Schormann, T.</creator><creator>Bürgel, U.</creator><creator>Klingberg, T.</creator><creator>Larsson, J.</creator><creator>Zilles, K.</creator><creator>Roland, P.</creator><general>EBRAINS</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210731</creationdate><title>Probabilistic cytoarchitectonic map of Area 4a (PreCG) (v13.1)</title><author>Geyer, S. ; Ledberg, A. ; Schleicher, A. ; Kinomura, S. ; Schormann, T. ; Bürgel, U. ; Klingberg, T. ; Larsson, J. ; Zilles, K. ; Roland, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_25493_7ak1_pfq3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Neuroscience</topic><toplevel>online_resources</toplevel><creatorcontrib>Geyer, S.</creatorcontrib><creatorcontrib>Ledberg, A.</creatorcontrib><creatorcontrib>Schleicher, A.</creatorcontrib><creatorcontrib>Kinomura, S.</creatorcontrib><creatorcontrib>Schormann, T.</creatorcontrib><creatorcontrib>Bürgel, U.</creatorcontrib><creatorcontrib>Klingberg, T.</creatorcontrib><creatorcontrib>Larsson, J.</creatorcontrib><creatorcontrib>Zilles, K.</creatorcontrib><creatorcontrib>Roland, P.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geyer, S.</au><au>Ledberg, A.</au><au>Schleicher, A.</au><au>Kinomura, S.</au><au>Schormann, T.</au><au>Bürgel, U.</au><au>Klingberg, T.</au><au>Larsson, J.</au><au>Zilles, K.</au><au>Roland, P.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Probabilistic cytoarchitectonic map of Area 4a (PreCG) (v13.1)</title><date>2021-07-31</date><risdate>2021</risdate><abstract>This dataset contains the distinct architectonic Area 4a (PreCG) in the individual, single subject template of the MNI Colin 27 as well as the MNI ICBM 152 2009c nonlinear asymmetric reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using cytoarchitectonic analysis on cell-body-stained histological sections of 10 human postmortem brains obtained from the body donor program of the University of Düsseldorf. The results of the cytoarchitectonic analysis were then mapped to both reference spaces, where each voxel was assigned the probability to belong to Area 4a (PreCG). The probability map of Area 4a (PreCG) are provided in the NifTi format for each brain reference space and hemisphere. The Julich-Brain atlas relies on a modular, flexible and adaptive framework containing workflows to create the probabilistic brain maps for these structures. Note that methodological improvements and integration of new brain structures may lead to small deviations in earlier released datasets. Other available data versions of Area 4a (PreCG): Geyer et al. (2018) [Data set, v9.2] [DOI: 10.25493/5GXC-Z2U](https://doi.org/10.25493%2F5GXC-Z2U) Geyer et al. (2019) [Data set, v9.4] [DOI: 10.25493/PVPP-P3Q](https://doi.org/10.25493%2FPVPP-P3Q) Geyer et al. (2020) [Data set, v11.0] [DOI: 10.25493/T9VH-A00](https://doi.org/10.25493%2FT9VH-A00) The most probable delineation of Area 4a (PreCG) derived from the calculation of a maximum probability map of all currently released Julich-Brain brain structures can be found here: Amunts et al. (2019) [Data set, v1.13] [DOI: 10.25493/Q3ZS-NV6](https://doi.org/10.25493%2FQ3ZS-NV6) Amunts et al. (2019) [Data set, v1.18] [DOI: 10.25493/8EGG-ZAR](https://doi.org/10.25493%2F8EGG-ZAR) Amunts et al. (2020) [Data set, v2.2] [DOI: 10.25493/TAKY-64D](https://doi.org/10.25493%2FTAKY-64D) Amunts et al. (2020) [Data set, v2.4] [DOI: 10.25493/A7Y0-NX9](https://doi.org/10.25493%2FA7Y0-NX9) Amunts et al. (2020) [Data set, v2.5] [DOI: 10.25493/8JKE-M53](https://doi.org/10.25493/8JKE-M53) Amunts et al. (2021) [Data set, v2.6] [DOI: 10.25493/KJQN-AM0](https://doi.org/10.25493%2FKJQN-AM0) Amunts et al. (2021) [Data set, v2.9] [DOI: 10.25493/VSMK-H94](https://doi.org/10.25493/VSMK-H94)</abstract><pub>EBRAINS</pub><doi>10.25493/7ak1-pfq</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.25493/7ak1-pfq
ispartof
issn
language eng
recordid cdi_datacite_primary_10_25493_7ak1_pfq
source DataCite
subjects Neuroscience
title Probabilistic cytoarchitectonic map of Area 4a (PreCG) (v13.1)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Geyer,%20S.&rft.date=2021-07-31&rft_id=info:doi/10.25493/7ak1-pfq&rft_dat=%3Cdatacite_PQ8%3E10_25493_7ak1_pfq%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true