WiFi RSSI Indoor Localization

A reliable and comprehensive public WiFi fingerprinting database for researchers to implement and compare the indoor localization’s methods.The database contains RSSI information from 6 APs conducted in different days with the support of autonomous robot.We use an autonomous robot to collect the WiF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hoang, Minh Tu, Dong, Xiaodai, Lu, Tao, Yuen, Brosnan, Westendorp, Robert
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hoang, Minh Tu
Dong, Xiaodai
Lu, Tao
Yuen, Brosnan
Westendorp, Robert
description A reliable and comprehensive public WiFi fingerprinting database for researchers to implement and compare the indoor localization’s methods.The database contains RSSI information from 6 APs conducted in different days with the support of autonomous robot.We use an autonomous robot to collect the WiFi fingerprint data. Our 3-wheel robot has multiple sensors including wheel odometer, an inertial measurement unit (IMU), a LIDAR, sonar sensors and a color and depth (RGB-D) camera. The robot can navigate to a target location to collect WiFi fingerprints automatically. The localization accuracy of the robot is 0.07 m ± 0.02 m. The dimension of the area is 21 m × 16 m. It has three long corridors. There are six APs and five of them provide two distinct MAC address for 2.4- and 5-GHz communications channels, respectively, except for one that only operates on 2.4-GHz frequency. There is one router can provide CSI information.
doi_str_mv 10.21227/v0ky-0p46
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_21227_v0ky_0p46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_21227_v0ky_0p46</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_21227_v0ky_0p463</originalsourceid><addsrcrecordid>eNpjYBAyNNAzMjQyMtcvM8iu1DUoMDHjZJANz3TLVAgKDvZU8MxLyc8vUvDJT07MyaxKLMnMz-NhYE1LzClO5YXS3Axabq4hzh66KYklicmZJanxBUWZuYlFlfGGBvFgs-NBZseDzDYmSTEAIJ4vcw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>WiFi RSSI Indoor Localization</title><source>DataCite</source><creator>Hoang, Minh Tu ; Dong, Xiaodai ; Lu, Tao ; Yuen, Brosnan ; Westendorp, Robert</creator><creatorcontrib>Hoang, Minh Tu ; Dong, Xiaodai ; Lu, Tao ; Yuen, Brosnan ; Westendorp, Robert</creatorcontrib><description>A reliable and comprehensive public WiFi fingerprinting database for researchers to implement and compare the indoor localization’s methods.The database contains RSSI information from 6 APs conducted in different days with the support of autonomous robot.We use an autonomous robot to collect the WiFi fingerprint data. Our 3-wheel robot has multiple sensors including wheel odometer, an inertial measurement unit (IMU), a LIDAR, sonar sensors and a color and depth (RGB-D) camera. The robot can navigate to a target location to collect WiFi fingerprints automatically. The localization accuracy of the robot is 0.07 m ± 0.02 m. The dimension of the area is 21 m × 16 m. It has three long corridors. There are six APs and five of them provide two distinct MAC address for 2.4- and 5-GHz communications channels, respectively, except for one that only operates on 2.4-GHz frequency. There is one router can provide CSI information.</description><identifier>DOI: 10.21227/v0ky-0p46</identifier><language>eng</language><publisher>IEEE DataPort</publisher><subject>Artificial Intelligence ; fingerprint-based localization ; IoT ; K-nearest neighbor (KNN) ; Machine Learning ; Received signal strength indicator (RSSI) ; WiFi indoor localization</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.21227/v0ky-0p46$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hoang, Minh Tu</creatorcontrib><creatorcontrib>Dong, Xiaodai</creatorcontrib><creatorcontrib>Lu, Tao</creatorcontrib><creatorcontrib>Yuen, Brosnan</creatorcontrib><creatorcontrib>Westendorp, Robert</creatorcontrib><title>WiFi RSSI Indoor Localization</title><description>A reliable and comprehensive public WiFi fingerprinting database for researchers to implement and compare the indoor localization’s methods.The database contains RSSI information from 6 APs conducted in different days with the support of autonomous robot.We use an autonomous robot to collect the WiFi fingerprint data. Our 3-wheel robot has multiple sensors including wheel odometer, an inertial measurement unit (IMU), a LIDAR, sonar sensors and a color and depth (RGB-D) camera. The robot can navigate to a target location to collect WiFi fingerprints automatically. The localization accuracy of the robot is 0.07 m ± 0.02 m. The dimension of the area is 21 m × 16 m. It has three long corridors. There are six APs and five of them provide two distinct MAC address for 2.4- and 5-GHz communications channels, respectively, except for one that only operates on 2.4-GHz frequency. There is one router can provide CSI information.</description><subject>Artificial Intelligence</subject><subject>fingerprint-based localization</subject><subject>IoT</subject><subject>K-nearest neighbor (KNN)</subject><subject>Machine Learning</subject><subject>Received signal strength indicator (RSSI)</subject><subject>WiFi indoor localization</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2019</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAyNNAzMjQyMtcvM8iu1DUoMDHjZJANz3TLVAgKDvZU8MxLyc8vUvDJT07MyaxKLMnMz-NhYE1LzClO5YXS3Axabq4hzh66KYklicmZJanxBUWZuYlFlfGGBvFgs-NBZseDzDYmSTEAIJ4vcw</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Hoang, Minh Tu</creator><creator>Dong, Xiaodai</creator><creator>Lu, Tao</creator><creator>Yuen, Brosnan</creator><creator>Westendorp, Robert</creator><general>IEEE DataPort</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20191212</creationdate><title>WiFi RSSI Indoor Localization</title><author>Hoang, Minh Tu ; Dong, Xiaodai ; Lu, Tao ; Yuen, Brosnan ; Westendorp, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_21227_v0ky_0p463</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>fingerprint-based localization</topic><topic>IoT</topic><topic>K-nearest neighbor (KNN)</topic><topic>Machine Learning</topic><topic>Received signal strength indicator (RSSI)</topic><topic>WiFi indoor localization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Minh Tu</creatorcontrib><creatorcontrib>Dong, Xiaodai</creatorcontrib><creatorcontrib>Lu, Tao</creatorcontrib><creatorcontrib>Yuen, Brosnan</creatorcontrib><creatorcontrib>Westendorp, Robert</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoang, Minh Tu</au><au>Dong, Xiaodai</au><au>Lu, Tao</au><au>Yuen, Brosnan</au><au>Westendorp, Robert</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>WiFi RSSI Indoor Localization</title><date>2019-12-12</date><risdate>2019</risdate><abstract>A reliable and comprehensive public WiFi fingerprinting database for researchers to implement and compare the indoor localization’s methods.The database contains RSSI information from 6 APs conducted in different days with the support of autonomous robot.We use an autonomous robot to collect the WiFi fingerprint data. Our 3-wheel robot has multiple sensors including wheel odometer, an inertial measurement unit (IMU), a LIDAR, sonar sensors and a color and depth (RGB-D) camera. The robot can navigate to a target location to collect WiFi fingerprints automatically. The localization accuracy of the robot is 0.07 m ± 0.02 m. The dimension of the area is 21 m × 16 m. It has three long corridors. There are six APs and five of them provide two distinct MAC address for 2.4- and 5-GHz communications channels, respectively, except for one that only operates on 2.4-GHz frequency. There is one router can provide CSI information.</abstract><pub>IEEE DataPort</pub><doi>10.21227/v0ky-0p46</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.21227/v0ky-0p46
ispartof
issn
language eng
recordid cdi_datacite_primary_10_21227_v0ky_0p46
source DataCite
subjects Artificial Intelligence
fingerprint-based localization
IoT
K-nearest neighbor (KNN)
Machine Learning
Received signal strength indicator (RSSI)
WiFi indoor localization
title WiFi RSSI Indoor Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Hoang,%20Minh%20Tu&rft.date=2019-12-12&rft_id=info:doi/10.21227/v0ky-0p46&rft_dat=%3Cdatacite_PQ8%3E10_21227_v0ky_0p46%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true