SIMO Cooperative Spectrum Sensing Scenario: A Dataset for Testing DNN-Based Models

This dataset focuses on cooperative spectrum sensing in a cognitive radio network, where multiple secondary users collaborate to detect the presence of a primary user. We introduce multiple cooperative spectrum sensing schemes based on a tree deep neural network architecture, incorporating a one-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Serrano, Salvatore Serrano, Serghini, Omar Serghini
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Serrano, Salvatore Serrano
Serghini, Omar Serghini
description This dataset focuses on cooperative spectrum sensing in a cognitive radio network, where multiple secondary users collaborate to detect the presence of a primary user. We introduce multiple cooperative spectrum sensing schemes based on a tree deep neural network architecture, incorporating a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity pattern of the primary user. The dataset provides instructions for utilizing the dataset, including executing the code in Google Colab, importing IPython notebooks, generating training and test data, training the models, and testing the models to obtain ROC curves and calculate Pd_SNR. The dataset also includes pre-trained models, which can be easily loaded and evaluated using the provided Python notebook.
doi_str_mv 10.21227/g55p-3h60
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_21227_g55p_3h60</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_21227_g55p_3h60</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_21227_g55p_3h603</originalsourceid><addsrcrecordid>eNpjYBAyNNAzMjQyMtdPNzUt0DXOMDPgZAgK9vT1V3DOzy9ILUosySxLVQguSE0uKSrNVQhOzSvOzEtXCE5OzUssysy3UnBUcEksSSxOLVFIyy9SCEktLgHJu_j56ToBRVMUfPNTUnOKeRhY0xJzilN5oTQ3g5aba4izh24KUHNyZklqfEFRZm5iUWW8oUE82EHxIAfFgxxkTJJiANZ0QVs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>SIMO Cooperative Spectrum Sensing Scenario: A Dataset for Testing DNN-Based Models</title><source>DataCite</source><creator>Serrano, Salvatore Serrano ; Serghini, Omar Serghini</creator><creatorcontrib>Serrano, Salvatore Serrano ; Serghini, Omar Serghini</creatorcontrib><description>This dataset focuses on cooperative spectrum sensing in a cognitive radio network, where multiple secondary users collaborate to detect the presence of a primary user. We introduce multiple cooperative spectrum sensing schemes based on a tree deep neural network architecture, incorporating a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity pattern of the primary user. The dataset provides instructions for utilizing the dataset, including executing the code in Google Colab, importing IPython notebooks, generating training and test data, training the models, and testing the models to obtain ROC curves and calculate Pd_SNR. The dataset also includes pre-trained models, which can be easily loaded and evaluated using the provided Python notebook.</description><identifier>DOI: 10.21227/g55p-3h60</identifier><language>eng</language><publisher>IEEE DataPort</publisher><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.21227/g55p-3h60$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Serrano, Salvatore Serrano</creatorcontrib><creatorcontrib>Serghini, Omar Serghini</creatorcontrib><title>SIMO Cooperative Spectrum Sensing Scenario: A Dataset for Testing DNN-Based Models</title><description>This dataset focuses on cooperative spectrum sensing in a cognitive radio network, where multiple secondary users collaborate to detect the presence of a primary user. We introduce multiple cooperative spectrum sensing schemes based on a tree deep neural network architecture, incorporating a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity pattern of the primary user. The dataset provides instructions for utilizing the dataset, including executing the code in Google Colab, importing IPython notebooks, generating training and test data, training the models, and testing the models to obtain ROC curves and calculate Pd_SNR. The dataset also includes pre-trained models, which can be easily loaded and evaluated using the provided Python notebook.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAyNNAzMjQyMtdPNzUt0DXOMDPgZAgK9vT1V3DOzy9ILUosySxLVQguSE0uKSrNVQhOzSvOzEtXCE5OzUssysy3UnBUcEksSSxOLVFIyy9SCEktLgHJu_j56ToBRVMUfPNTUnOKeRhY0xJzilN5oTQ3g5aba4izh24KUHNyZklqfEFRZm5iUWW8oUE82EHxIAfFgxxkTJJiANZ0QVs</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Serrano, Salvatore Serrano</creator><creator>Serghini, Omar Serghini</creator><general>IEEE DataPort</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2023</creationdate><title>SIMO Cooperative Spectrum Sensing Scenario: A Dataset for Testing DNN-Based Models</title><author>Serrano, Salvatore Serrano ; Serghini, Omar Serghini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_21227_g55p_3h603</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Serrano, Salvatore Serrano</creatorcontrib><creatorcontrib>Serghini, Omar Serghini</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Serrano, Salvatore Serrano</au><au>Serghini, Omar Serghini</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>SIMO Cooperative Spectrum Sensing Scenario: A Dataset for Testing DNN-Based Models</title><date>2023</date><risdate>2023</risdate><abstract>This dataset focuses on cooperative spectrum sensing in a cognitive radio network, where multiple secondary users collaborate to detect the presence of a primary user. We introduce multiple cooperative spectrum sensing schemes based on a tree deep neural network architecture, incorporating a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity pattern of the primary user. The dataset provides instructions for utilizing the dataset, including executing the code in Google Colab, importing IPython notebooks, generating training and test data, training the models, and testing the models to obtain ROC curves and calculate Pd_SNR. The dataset also includes pre-trained models, which can be easily loaded and evaluated using the provided Python notebook.</abstract><pub>IEEE DataPort</pub><doi>10.21227/g55p-3h60</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.21227/g55p-3h60
ispartof
issn
language eng
recordid cdi_datacite_primary_10_21227_g55p_3h60
source DataCite
title SIMO Cooperative Spectrum Sensing Scenario: A Dataset for Testing DNN-Based Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Serrano,%20Salvatore%20Serrano&rft.date=2023&rft_id=info:doi/10.21227/g55p-3h60&rft_dat=%3Cdatacite_PQ8%3E10_21227_g55p_3h60%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true