Dataset: The perils and pitfalls of block design for EEG classification experiments
Dataset asscociated with a paper in IEEE Transactions on Pattern Analysis and Machine Intelligence"The perils and pitfalls of block design for EEG classification experiments"DOI: 10.1109/TPAMI.2020.2973153 If you use this data, please cite the above paper.
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Li, Ren Johansen, Jared S. Ahmed, Hamad Ilyevsky, Thomas V. Wilbur, Ronnie B. Bharadwaj, Hari M Siskind, Jeffrey Mark |
description | Dataset asscociated with a paper in IEEE Transactions on Pattern Analysis and Machine Intelligence"The perils and pitfalls of block design for EEG classification experiments"DOI: 10.1109/TPAMI.2020.2973153 If you use this data, please cite the above paper. |
doi_str_mv | 10.21227/416j-3r62 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_21227_416j_3r62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_21227_416j_3r62</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_21227_416j_3r623</originalsourceid><addsrcrecordid>eNqVjrEOwiAURVkcjLr4BW82qRZqauKqVXe7E6QPRREaHoP-vdT4A043N7kn9zA25-VScCE2qzWv70UVazFm571KijBtob0h9BitI1C-g94mo1wuwcDFBf2ADslePZgQoWmOoJ0issZqlWzwgK8BfqJPNGWjjBLOfjlhi0PT7k5Fl7-0TSj7vFTxLXkpv0ZyMJKDUfXX-ANzVEJT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Dataset: The perils and pitfalls of block design for EEG classification experiments</title><source>DataCite</source><creator>Li, Ren ; Johansen, Jared S. ; Ahmed, Hamad ; Ilyevsky, Thomas V. ; Wilbur, Ronnie B. ; Bharadwaj, Hari M ; Siskind, Jeffrey Mark</creator><creatorcontrib>Li, Ren ; Johansen, Jared S. ; Ahmed, Hamad ; Ilyevsky, Thomas V. ; Wilbur, Ronnie B. ; Bharadwaj, Hari M ; Siskind, Jeffrey Mark</creatorcontrib><description>Dataset asscociated with a paper in IEEE Transactions on Pattern Analysis and Machine Intelligence"The perils and pitfalls of block design for EEG classification experiments"DOI: 10.1109/TPAMI.2020.2973153 If you use this data, please cite the above paper.</description><identifier>DOI: 10.21227/416j-3r62</identifier><language>eng</language><publisher>IEEE DataPort</publisher><subject>Artificial Intelligence ; Brain ; Computational Intelligence ; Computer Vision ; Digital signal processing ; Discrete-time signal processing ; EEG ; Image Processing ; Machine Learning ; Neuroscience</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0105-6503 ; 0000-0003-2998-7104 ; 0000-0001-7081-9351 ; 0000-0002-9524-4467 ; 0000-0002-5794-4112 ; 0000-0002-9190-7892 ; 0000-0001-8685-9630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.21227/416j-3r62$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Li, Ren</creatorcontrib><creatorcontrib>Johansen, Jared S.</creatorcontrib><creatorcontrib>Ahmed, Hamad</creatorcontrib><creatorcontrib>Ilyevsky, Thomas V.</creatorcontrib><creatorcontrib>Wilbur, Ronnie B.</creatorcontrib><creatorcontrib>Bharadwaj, Hari M</creatorcontrib><creatorcontrib>Siskind, Jeffrey Mark</creatorcontrib><title>Dataset: The perils and pitfalls of block design for EEG classification experiments</title><description>Dataset asscociated with a paper in IEEE Transactions on Pattern Analysis and Machine Intelligence"The perils and pitfalls of block design for EEG classification experiments"DOI: 10.1109/TPAMI.2020.2973153 If you use this data, please cite the above paper.</description><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Computational Intelligence</subject><subject>Computer Vision</subject><subject>Digital signal processing</subject><subject>Discrete-time signal processing</subject><subject>EEG</subject><subject>Image Processing</subject><subject>Machine Learning</subject><subject>Neuroscience</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrEOwiAURVkcjLr4BW82qRZqauKqVXe7E6QPRREaHoP-vdT4A043N7kn9zA25-VScCE2qzWv70UVazFm571KijBtob0h9BitI1C-g94mo1wuwcDFBf2ADslePZgQoWmOoJ0issZqlWzwgK8BfqJPNGWjjBLOfjlhi0PT7k5Fl7-0TSj7vFTxLXkpv0ZyMJKDUfXX-ANzVEJT</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Li, Ren</creator><creator>Johansen, Jared S.</creator><creator>Ahmed, Hamad</creator><creator>Ilyevsky, Thomas V.</creator><creator>Wilbur, Ronnie B.</creator><creator>Bharadwaj, Hari M</creator><creator>Siskind, Jeffrey Mark</creator><general>IEEE DataPort</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-0105-6503</orcidid><orcidid>https://orcid.org/0000-0003-2998-7104</orcidid><orcidid>https://orcid.org/0000-0001-7081-9351</orcidid><orcidid>https://orcid.org/0000-0002-9524-4467</orcidid><orcidid>https://orcid.org/0000-0002-5794-4112</orcidid><orcidid>https://orcid.org/0000-0002-9190-7892</orcidid><orcidid>https://orcid.org/0000-0001-8685-9630</orcidid></search><sort><creationdate>20201124</creationdate><title>Dataset: The perils and pitfalls of block design for EEG classification experiments</title><author>Li, Ren ; Johansen, Jared S. ; Ahmed, Hamad ; Ilyevsky, Thomas V. ; Wilbur, Ronnie B. ; Bharadwaj, Hari M ; Siskind, Jeffrey Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_21227_416j_3r623</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Computational Intelligence</topic><topic>Computer Vision</topic><topic>Digital signal processing</topic><topic>Discrete-time signal processing</topic><topic>EEG</topic><topic>Image Processing</topic><topic>Machine Learning</topic><topic>Neuroscience</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ren</creatorcontrib><creatorcontrib>Johansen, Jared S.</creatorcontrib><creatorcontrib>Ahmed, Hamad</creatorcontrib><creatorcontrib>Ilyevsky, Thomas V.</creatorcontrib><creatorcontrib>Wilbur, Ronnie B.</creatorcontrib><creatorcontrib>Bharadwaj, Hari M</creatorcontrib><creatorcontrib>Siskind, Jeffrey Mark</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Ren</au><au>Johansen, Jared S.</au><au>Ahmed, Hamad</au><au>Ilyevsky, Thomas V.</au><au>Wilbur, Ronnie B.</au><au>Bharadwaj, Hari M</au><au>Siskind, Jeffrey Mark</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Dataset: The perils and pitfalls of block design for EEG classification experiments</title><date>2020-11-24</date><risdate>2020</risdate><abstract>Dataset asscociated with a paper in IEEE Transactions on Pattern Analysis and Machine Intelligence"The perils and pitfalls of block design for EEG classification experiments"DOI: 10.1109/TPAMI.2020.2973153 If you use this data, please cite the above paper.</abstract><pub>IEEE DataPort</pub><doi>10.21227/416j-3r62</doi><orcidid>https://orcid.org/0000-0002-0105-6503</orcidid><orcidid>https://orcid.org/0000-0003-2998-7104</orcidid><orcidid>https://orcid.org/0000-0001-7081-9351</orcidid><orcidid>https://orcid.org/0000-0002-9524-4467</orcidid><orcidid>https://orcid.org/0000-0002-5794-4112</orcidid><orcidid>https://orcid.org/0000-0002-9190-7892</orcidid><orcidid>https://orcid.org/0000-0001-8685-9630</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.21227/416j-3r62 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_21227_416j_3r62 |
source | DataCite |
subjects | Artificial Intelligence Brain Computational Intelligence Computer Vision Digital signal processing Discrete-time signal processing EEG Image Processing Machine Learning Neuroscience |
title | Dataset: The perils and pitfalls of block design for EEG classification experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Li,%20Ren&rft.date=2020-11-24&rft_id=info:doi/10.21227/416j-3r62&rft_dat=%3Cdatacite_PQ8%3E10_21227_416j_3r62%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |