Hysteresis Characterization Dataset

The hysteresis characteristics of ferromagnetic materials are crucial for the operation of electrical equipment. To simulate the hysteresis return line of oriented silicon steel sheets under mixed complex excitation conditions, we construct the corresponding dataset of hysteresis characteristics thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bai, Yaolong Bai
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bai, Yaolong Bai
description The hysteresis characteristics of ferromagnetic materials are crucial for the operation of electrical equipment. To simulate the hysteresis return line of oriented silicon steel sheets under mixed complex excitation conditions, we construct the corresponding dataset of hysteresis characteristics through an experimental platform, comprising 514 pairs of hysteresis return line data. Six features, such as the magnetic induction strength and magnetic field strength from the previous moment, serve as inputs to the dataset. The dataset is divided into training and test sets in accordance with a specified ratio. This dataset is intended to facilitate the training and evaluation of deep learning-based hysteresis models.
doi_str_mv 10.21227/267f-xd74
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_21227_267f_xd74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_21227_267f_xd74</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_21227_267f_xd743</originalsourceid><addsrcrecordid>eNpjYBAyNNAzMjQyMtc3MjNP061IMTfhZFD2qCwuSS1KLc4sVnDOSCxKTAbyMqsSSzLz8xRcEksSi1NLeBhY0xJzilN5oTQ3g5aba4izh24KUD45syQ1vqAoMzexqDLe0CAebEM8yIZ4kA3GJCkGAM4hMgE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Hysteresis Characterization Dataset</title><source>DataCite</source><creator>Bai, Yaolong Bai</creator><creatorcontrib>Bai, Yaolong Bai</creatorcontrib><description>The hysteresis characteristics of ferromagnetic materials are crucial for the operation of electrical equipment. To simulate the hysteresis return line of oriented silicon steel sheets under mixed complex excitation conditions, we construct the corresponding dataset of hysteresis characteristics through an experimental platform, comprising 514 pairs of hysteresis return line data. Six features, such as the magnetic induction strength and magnetic field strength from the previous moment, serve as inputs to the dataset. The dataset is divided into training and test sets in accordance with a specified ratio. This dataset is intended to facilitate the training and evaluation of deep learning-based hysteresis models.</description><identifier>DOI: 10.21227/267f-xd74</identifier><language>eng</language><publisher>IEEE DataPort</publisher><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.21227/267f-xd74$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bai, Yaolong Bai</creatorcontrib><title>Hysteresis Characterization Dataset</title><description>The hysteresis characteristics of ferromagnetic materials are crucial for the operation of electrical equipment. To simulate the hysteresis return line of oriented silicon steel sheets under mixed complex excitation conditions, we construct the corresponding dataset of hysteresis characteristics through an experimental platform, comprising 514 pairs of hysteresis return line data. Six features, such as the magnetic induction strength and magnetic field strength from the previous moment, serve as inputs to the dataset. The dataset is divided into training and test sets in accordance with a specified ratio. This dataset is intended to facilitate the training and evaluation of deep learning-based hysteresis models.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAyNNAzMjQyMtc3MjNP061IMTfhZFD2qCwuSS1KLc4sVnDOSCxKTAbyMqsSSzLz8xRcEksSi1NLeBhY0xJzilN5oTQ3g5aba4izh24KUD45syQ1vqAoMzexqDLe0CAebEM8yIZ4kA3GJCkGAM4hMgE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bai, Yaolong Bai</creator><general>IEEE DataPort</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2024</creationdate><title>Hysteresis Characterization Dataset</title><author>Bai, Yaolong Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_21227_267f_xd743</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yaolong Bai</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Yaolong Bai</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Hysteresis Characterization Dataset</title><date>2024</date><risdate>2024</risdate><abstract>The hysteresis characteristics of ferromagnetic materials are crucial for the operation of electrical equipment. To simulate the hysteresis return line of oriented silicon steel sheets under mixed complex excitation conditions, we construct the corresponding dataset of hysteresis characteristics through an experimental platform, comprising 514 pairs of hysteresis return line data. Six features, such as the magnetic induction strength and magnetic field strength from the previous moment, serve as inputs to the dataset. The dataset is divided into training and test sets in accordance with a specified ratio. This dataset is intended to facilitate the training and evaluation of deep learning-based hysteresis models.</abstract><pub>IEEE DataPort</pub><doi>10.21227/267f-xd74</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.21227/267f-xd74
ispartof
issn
language eng
recordid cdi_datacite_primary_10_21227_267f_xd74
source DataCite
title Hysteresis Characterization Dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Bai,%20Yaolong%20Bai&rft.date=2024&rft_id=info:doi/10.21227/267f-xd74&rft_dat=%3Cdatacite_PQ8%3E10_21227_267f_xd74%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true