A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks

We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in co- variance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berens, Tobias, Wied, Dominik, Ziggel, Daniel
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Berens, Tobias
Wied, Dominik
Ziggel, Daniel
description We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in co- variance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on the covariance matrix, yield considerable results in previous studies. However, nancial assets cannot be assumed to have a constant covariance matrix over longer periods of time. Hence, we estimate the covariance matrix of the assets by respecting potential change points. The resulting approach resolves issues like timing or determining a sample for parameter estimation. Moreover, we apply the approach to two datasets and compare the results to relevant benchmark techniques by means of an out-of-sample study. It is shown that the new approach outperforms equally weighted portfolios and plain minimum-variance portfolios on average.
doi_str_mv 10.17877/de290r-7149
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17877_de290r_7149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17877_de290r_7149</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17877_de290r_71493</originalsourceid><addsrcrecordid>eNqVjkFqw0AMRWfTRWizywF0gLqxk4CbZSktOUD3g2zLQXRmZDRyggu9e500F8jqw-e_z3NuVZUvVf1a1-uONvtSi7ra7Rfu9w1aiUMgozABjiYRjTqQwTjyDxpLgmw6l8cJelE4BmkwQOTEcYzFCZUxtQSDqPUSWDI0mC8XCRASncEo2xWdf8bWRp3xRgm_85N76DFkWt7y0T1_fny9H4oODVs28oNyRJ18Vfqrvf-39xf77Z3zP1k8VaE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks</title><source>DataCite</source><creator>Berens, Tobias ; Wied, Dominik ; Ziggel, Daniel</creator><creatorcontrib>Berens, Tobias ; Wied, Dominik ; Ziggel, Daniel</creatorcontrib><description>We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in co- variance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on the covariance matrix, yield considerable results in previous studies. However, nancial assets cannot be assumed to have a constant covariance matrix over longer periods of time. Hence, we estimate the covariance matrix of the assets by respecting potential change points. The resulting approach resolves issues like timing or determining a sample for parameter estimation. Moreover, we apply the approach to two datasets and compare the results to relevant benchmark techniques by means of an out-of-sample study. It is shown that the new approach outperforms equally weighted portfolios and plain minimum-variance portfolios on average.</description><identifier>DOI: 10.17877/de290r-7149</identifier><language>eng</language><publisher>Technische Universität Dortmund</publisher><subject>fluctuation test ; portfolio optimization ; structural break</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1887</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17877/de290r-7149$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Berens, Tobias</creatorcontrib><creatorcontrib>Wied, Dominik</creatorcontrib><creatorcontrib>Ziggel, Daniel</creatorcontrib><title>A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks</title><addtitle>Discussion Paper / SFB 823;19/2013</addtitle><description>We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in co- variance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on the covariance matrix, yield considerable results in previous studies. However, nancial assets cannot be assumed to have a constant covariance matrix over longer periods of time. Hence, we estimate the covariance matrix of the assets by respecting potential change points. The resulting approach resolves issues like timing or determining a sample for parameter estimation. Moreover, we apply the approach to two datasets and compare the results to relevant benchmark techniques by means of an out-of-sample study. It is shown that the new approach outperforms equally weighted portfolios and plain minimum-variance portfolios on average.</description><subject>fluctuation test</subject><subject>portfolio optimization</subject><subject>structural break</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2013</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjkFqw0AMRWfTRWizywF0gLqxk4CbZSktOUD3g2zLQXRmZDRyggu9e500F8jqw-e_z3NuVZUvVf1a1-uONvtSi7ra7Rfu9w1aiUMgozABjiYRjTqQwTjyDxpLgmw6l8cJelE4BmkwQOTEcYzFCZUxtQSDqPUSWDI0mC8XCRASncEo2xWdf8bWRp3xRgm_85N76DFkWt7y0T1_fny9H4oODVs28oNyRJ18Vfqrvf-39xf77Z3zP1k8VaE</recordid><startdate>20130513</startdate><enddate>20130513</enddate><creator>Berens, Tobias</creator><creator>Wied, Dominik</creator><creator>Ziggel, Daniel</creator><general>Technische Universität Dortmund</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20130513</creationdate><title>A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks</title><author>Berens, Tobias ; Wied, Dominik ; Ziggel, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17877_de290r_71493</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2013</creationdate><topic>fluctuation test</topic><topic>portfolio optimization</topic><topic>structural break</topic><toplevel>online_resources</toplevel><creatorcontrib>Berens, Tobias</creatorcontrib><creatorcontrib>Wied, Dominik</creatorcontrib><creatorcontrib>Ziggel, Daniel</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berens, Tobias</au><au>Wied, Dominik</au><au>Ziggel, Daniel</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks</title><addtitle>Discussion Paper / SFB 823;19/2013</addtitle><date>2013-05-13</date><risdate>2013</risdate><abstract>We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in co- variance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on the covariance matrix, yield considerable results in previous studies. However, nancial assets cannot be assumed to have a constant covariance matrix over longer periods of time. Hence, we estimate the covariance matrix of the assets by respecting potential change points. The resulting approach resolves issues like timing or determining a sample for parameter estimation. Moreover, we apply the approach to two datasets and compare the results to relevant benchmark techniques by means of an out-of-sample study. It is shown that the new approach outperforms equally weighted portfolios and plain minimum-variance portfolios on average.</abstract><pub>Technische Universität Dortmund</pub><doi>10.17877/de290r-7149</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17877/de290r-7149
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17877_de290r_7149
source DataCite
subjects fluctuation test
portfolio optimization
structural break
title A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Berens,%20Tobias&rft.date=2013-05-13&rft_id=info:doi/10.17877/de290r-7149&rft_dat=%3Cdatacite_PQ8%3E10_17877_de290r_7149%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true