TORRICELLI: A software to determine atomic spatial distributions from normal incidence x-ray standing wave data

We introduce a software, Torricelli, for the analysis of normal incidence x-ray standing wave data. In particular, given the experimental x-ray reflectivity and photoelectron yield of a data set (photon energy scan), Torricelli provides the corresponding structural parameters. The algorithm and equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bocquet, F. C.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bocquet, F. C.
description We introduce a software, Torricelli, for the analysis of normal incidence x-ray standing wave data. In particular, given the experimental x-ray reflectivity and photoelectron yield of a data set (photon energy scan), Torricelli provides the corresponding structural parameters. The algorithm and equations on which Torricelli is based are explained here in detail. In particular, the model of the experimental reflectivity takes into account the theoretical reflectivity of the double crystal monochromator as well as the sample crystal, and a Gaussian broadening to account for mosaicity and photon energy spread. If statistical errors are provided together with the photoelectron yield data, these are propagated to produce the statistical errors of the structural parameters. For a more accurate analysis, angle-dependent correction parameters specific to the photoemission process, also beyond the dipole approximation, can be taken into account, especially in the case of non-perfect normal incidence. The obtained structural parameters can be compared, averaged, and displayed in an Argand diagram, along with statistical error bars.
doi_str_mv 10.17632/xhwn8cygjp
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_xhwn8cygjp</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_xhwn8cygjp</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_xhwn8cygjp3</originalsourceid><addsrcrecordid>eNqVjj0LwjAQQLM4iDr5B26XqlVQcRNRFARB3MuZXPWkSUpyWvvv_UBwdnrDe8NTqpsO--l0Mh4NHpfKzXR9vpZN5Y_7w2G7XO122zksIPpcKgwE4sGQULDsCFC8ZQ2xRGEswHCUwKebsHcR8uAtOB_sy7DTbMhpgkcSsIYo6Ay7M1R4JzAo2FaNHItInS9bqrdeHZeb5C01C2VlYIuhztJh9tnNfrvj_-onnLpRzA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>TORRICELLI: A software to determine atomic spatial distributions from normal incidence x-ray standing wave data</title><source>DataCite</source><creator>Bocquet, F. C.</creator><creatorcontrib>Bocquet, F. C.</creatorcontrib><description>We introduce a software, Torricelli, for the analysis of normal incidence x-ray standing wave data. In particular, given the experimental x-ray reflectivity and photoelectron yield of a data set (photon energy scan), Torricelli provides the corresponding structural parameters. The algorithm and equations on which Torricelli is based are explained here in detail. In particular, the model of the experimental reflectivity takes into account the theoretical reflectivity of the double crystal monochromator as well as the sample crystal, and a Gaussian broadening to account for mosaicity and photon energy spread. If statistical errors are provided together with the photoelectron yield data, these are propagated to produce the statistical errors of the structural parameters. For a more accurate analysis, angle-dependent correction parameters specific to the photoemission process, also beyond the dipole approximation, can be taken into account, especially in the case of non-perfect normal incidence. The obtained structural parameters can be compared, averaged, and displayed in an Argand diagram, along with statistical error bars.</description><identifier>DOI: 10.17632/xhwn8cygjp</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Computational Physics</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/xhwn8cygjp$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bocquet, F. C.</creatorcontrib><title>TORRICELLI: A software to determine atomic spatial distributions from normal incidence x-ray standing wave data</title><description>We introduce a software, Torricelli, for the analysis of normal incidence x-ray standing wave data. In particular, given the experimental x-ray reflectivity and photoelectron yield of a data set (photon energy scan), Torricelli provides the corresponding structural parameters. The algorithm and equations on which Torricelli is based are explained here in detail. In particular, the model of the experimental reflectivity takes into account the theoretical reflectivity of the double crystal monochromator as well as the sample crystal, and a Gaussian broadening to account for mosaicity and photon energy spread. If statistical errors are provided together with the photoelectron yield data, these are propagated to produce the statistical errors of the structural parameters. For a more accurate analysis, angle-dependent correction parameters specific to the photoemission process, also beyond the dipole approximation, can be taken into account, especially in the case of non-perfect normal incidence. The obtained structural parameters can be compared, averaged, and displayed in an Argand diagram, along with statistical error bars.</description><subject>Computational Physics</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2018</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjj0LwjAQQLM4iDr5B26XqlVQcRNRFARB3MuZXPWkSUpyWvvv_UBwdnrDe8NTqpsO--l0Mh4NHpfKzXR9vpZN5Y_7w2G7XO122zksIPpcKgwE4sGQULDsCFC8ZQ2xRGEswHCUwKebsHcR8uAtOB_sy7DTbMhpgkcSsIYo6Ay7M1R4JzAo2FaNHItInS9bqrdeHZeb5C01C2VlYIuhztJh9tnNfrvj_-onnLpRzA</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Bocquet, F. C.</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20181119</creationdate><title>TORRICELLI: A software to determine atomic spatial distributions from normal incidence x-ray standing wave data</title><author>Bocquet, F. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_xhwn8cygjp3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Bocquet, F. C.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bocquet, F. C.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>TORRICELLI: A software to determine atomic spatial distributions from normal incidence x-ray standing wave data</title><date>2018-11-19</date><risdate>2018</risdate><abstract>We introduce a software, Torricelli, for the analysis of normal incidence x-ray standing wave data. In particular, given the experimental x-ray reflectivity and photoelectron yield of a data set (photon energy scan), Torricelli provides the corresponding structural parameters. The algorithm and equations on which Torricelli is based are explained here in detail. In particular, the model of the experimental reflectivity takes into account the theoretical reflectivity of the double crystal monochromator as well as the sample crystal, and a Gaussian broadening to account for mosaicity and photon energy spread. If statistical errors are provided together with the photoelectron yield data, these are propagated to produce the statistical errors of the structural parameters. For a more accurate analysis, angle-dependent correction parameters specific to the photoemission process, also beyond the dipole approximation, can be taken into account, especially in the case of non-perfect normal incidence. The obtained structural parameters can be compared, averaged, and displayed in an Argand diagram, along with statistical error bars.</abstract><pub>Mendeley</pub><doi>10.17632/xhwn8cygjp</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/xhwn8cygjp
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_xhwn8cygjp
source DataCite
subjects Computational Physics
title TORRICELLI: A software to determine atomic spatial distributions from normal incidence x-ray standing wave data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Bocquet,%20F.%20C.&rft.date=2018-11-19&rft_id=info:doi/10.17632/xhwn8cygjp&rft_dat=%3Cdatacite_PQ8%3E10_17632_xhwn8cygjp%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true