Road Surface Image Dataset with Detailed Annotations
The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired wit...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Tong Zhao |
description | The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems. |
doi_str_mv | 10.17632/w86hvkrzc5.2 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_w86hvkrzc5_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_w86hvkrzc5_2</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_w86hvkrzc5_23</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNDczNtIvtzDLKMsuqko21TPiZDAJyk9MUQguLUpLTE5V8MxNTE9VcEksSSxOLVEozyzJUHBJLUnMzElNUXDMy8svSSzJzM8r5mFgTUvMKU7lhdLcDLpuriHOHropQJ3JmSWp8QVFmbmJRZXxhgbxYFvjEbbGGxmTqh4A-qM8TQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Road Surface Image Dataset with Detailed Annotations</title><source>DataCite</source><creator>Tong Zhao</creator><creatorcontrib>Tong Zhao</creatorcontrib><description>The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems.</description><identifier>DOI: 10.17632/w86hvkrzc5.2</identifier><language>eng</language><publisher>Mendeley</publisher><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/w86hvkrzc5.2$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tong Zhao</creatorcontrib><title>Road Surface Image Dataset with Detailed Annotations</title><description>The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNDczNtIvtzDLKMsuqko21TPiZDAJyk9MUQguLUpLTE5V8MxNTE9VcEksSSxOLVEozyzJUHBJLUnMzElNUXDMy8svSSzJzM8r5mFgTUvMKU7lhdLcDLpuriHOHropQJ3JmSWp8QVFmbmJRZXxhgbxYFvjEbbGGxmTqh4A-qM8TQ</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Tong Zhao</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220711</creationdate><title>Road Surface Image Dataset with Detailed Annotations</title><author>Tong Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_w86hvkrzc5_23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tong Zhao</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong Zhao</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Road Surface Image Dataset with Detailed Annotations</title><date>2022-07-11</date><risdate>2022</risdate><abstract>The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems.</abstract><pub>Mendeley</pub><doi>10.17632/w86hvkrzc5.2</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/w86hvkrzc5.2 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_w86hvkrzc5_2 |
source | DataCite |
title | Road Surface Image Dataset with Detailed Annotations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Tong%20Zhao&rft.date=2022-07-11&rft_id=info:doi/10.17632/w86hvkrzc5.2&rft_dat=%3Cdatacite_PQ8%3E10_17632_w86hvkrzc5_2%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |