Road Surface Image Dataset with Detailed Annotations

The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tong Zhao
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tong Zhao
description The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems.
doi_str_mv 10.17632/w86hvkrzc5.2
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_w86hvkrzc5_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_w86hvkrzc5_2</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_w86hvkrzc5_23</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNDczNtIvtzDLKMsuqko21TPiZDAJyk9MUQguLUpLTE5V8MxNTE9VcEksSSxOLVEozyzJUHBJLUnMzElNUXDMy8svSSzJzM8r5mFgTUvMKU7lhdLcDLpuriHOHropQJ3JmSWp8QVFmbmJRZXxhgbxYFvjEbbGGxmTqh4A-qM8TQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Road Surface Image Dataset with Detailed Annotations</title><source>DataCite</source><creator>Tong Zhao</creator><creatorcontrib>Tong Zhao</creatorcontrib><description>The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems.</description><identifier>DOI: 10.17632/w86hvkrzc5.2</identifier><language>eng</language><publisher>Mendeley</publisher><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/w86hvkrzc5.2$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tong Zhao</creatorcontrib><title>Road Surface Image Dataset with Detailed Annotations</title><description>The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNDczNtIvtzDLKMsuqko21TPiZDAJyk9MUQguLUpLTE5V8MxNTE9VcEksSSxOLVEozyzJUHBJLUnMzElNUXDMy8svSSzJzM8r5mFgTUvMKU7lhdLcDLpuriHOHropQJ3JmSWp8QVFmbmJRZXxhgbxYFvjEbbGGxmTqh4A-qM8TQ</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Tong Zhao</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220711</creationdate><title>Road Surface Image Dataset with Detailed Annotations</title><author>Tong Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_w86hvkrzc5_23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tong Zhao</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong Zhao</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Road Surface Image Dataset with Detailed Annotations</title><date>2022-07-11</date><risdate>2022</risdate><abstract>The preview of the road surface states is essential for improving the safety and the ride comfort of autonomous vehicles. This dataset consists of 370151 (240 x 360 pixels) road surface images captured under a wide range of road and weather conditions in China. The original pictures are acquired with a vehicle-mounted camera and then the patches containing only the road surface area are cropped. The images are classified into 27 categories, containing both the friction level, material, and unevenness properties. This large-scale dataset is useful for developing vision-based road sensing modules to improve the performance of the driving assistance systems.</abstract><pub>Mendeley</pub><doi>10.17632/w86hvkrzc5.2</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/w86hvkrzc5.2
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_w86hvkrzc5_2
source DataCite
title Road Surface Image Dataset with Detailed Annotations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Tong%20Zhao&rft.date=2022-07-11&rft_id=info:doi/10.17632/w86hvkrzc5.2&rft_dat=%3Cdatacite_PQ8%3E10_17632_w86hvkrzc5_2%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true