Dataset for: Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data

Among them, three tables include the EDS data of analyzed elements including 90-second elemental data of 2255 grains, 40-second elemental data of 492 grains and 6- second elemental data of 320 grains, respectively. The tables 4-7 include the confusion matrixes based on datasets of different analyzin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hu, Xiumian
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hu, Xiumian
description Among them, three tables include the EDS data of analyzed elements including 90-second elemental data of 2255 grains, 40-second elemental data of 492 grains and 6- second elemental data of 320 grains, respectively. The tables 4-7 include the confusion matrixes based on datasets of different analyzing times and different decision attributes.
doi_str_mv 10.17632/t6t82b2h7h.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_t6t82b2h7h_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_t6t82b2h7h_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_t6t82b2h7h_13</originalsourceid><addsrcrecordid>eNqVTrsKwjAUzeIg6uh-f6DVVLDiaisuneoerjE1F9KkJLGQv7eK4Ox0OJwnY2u-zXm53xWbuI-H4lboUud8zsYKIwYVoXP-CA1KTVaBUegt2QfgMBiSGMlZiA7wGV0_MYnGJJAGQ6AugVY4JuinpEcTgCx4GpWHgPYOtwTP8O5q62ZTVy3cp8Ulm3WTVa2-uGDZub6eLtlblBSVGDz16JPgW_H5LX6_Bd_9638BAgJTAw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Dataset for: Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data</title><source>DataCite</source><creator>Hu, Xiumian</creator><creatorcontrib>Hu, Xiumian</creatorcontrib><description>Among them, three tables include the EDS data of analyzed elements including 90-second elemental data of 2255 grains, 40-second elemental data of 492 grains and 6- second elemental data of 320 grains, respectively. The tables 4-7 include the confusion matrixes based on datasets of different analyzing times and different decision attributes.</description><identifier>DOI: 10.17632/t6t82b2h7h.1</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Artificial Intelligence ; FOS: Earth and related environmental sciences ; Geochemistry ; Geology ; Heavy Mineral ; Machine Learning ; Mineralogy ; Sedimentology</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/t6t82b2h7h.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hu, Xiumian</creatorcontrib><title>Dataset for: Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data</title><description>Among them, three tables include the EDS data of analyzed elements including 90-second elemental data of 2255 grains, 40-second elemental data of 492 grains and 6- second elemental data of 320 grains, respectively. The tables 4-7 include the confusion matrixes based on datasets of different analyzing times and different decision attributes.</description><subject>Artificial Intelligence</subject><subject>FOS: Earth and related environmental sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Heavy Mineral</subject><subject>Machine Learning</subject><subject>Mineralogy</subject><subject>Sedimentology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2019</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVTrsKwjAUzeIg6uh-f6DVVLDiaisuneoerjE1F9KkJLGQv7eK4Ox0OJwnY2u-zXm53xWbuI-H4lboUud8zsYKIwYVoXP-CA1KTVaBUegt2QfgMBiSGMlZiA7wGV0_MYnGJJAGQ6AugVY4JuinpEcTgCx4GpWHgPYOtwTP8O5q62ZTVy3cp8Ulm3WTVa2-uGDZub6eLtlblBSVGDz16JPgW_H5LX6_Bd_9638BAgJTAw</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Hu, Xiumian</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20190703</creationdate><title>Dataset for: Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data</title><author>Hu, Xiumian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_t6t82b2h7h_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>FOS: Earth and related environmental sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Heavy Mineral</topic><topic>Machine Learning</topic><topic>Mineralogy</topic><topic>Sedimentology</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiumian</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xiumian</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Dataset for: Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data</title><date>2019-07-03</date><risdate>2019</risdate><abstract>Among them, three tables include the EDS data of analyzed elements including 90-second elemental data of 2255 grains, 40-second elemental data of 492 grains and 6- second elemental data of 320 grains, respectively. The tables 4-7 include the confusion matrixes based on datasets of different analyzing times and different decision attributes.</abstract><pub>Mendeley</pub><doi>10.17632/t6t82b2h7h.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/t6t82b2h7h.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_t6t82b2h7h_1
source DataCite
subjects Artificial Intelligence
FOS: Earth and related environmental sciences
Geochemistry
Geology
Heavy Mineral
Machine Learning
Mineralogy
Sedimentology
title Dataset for: Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Hu,%20Xiumian&rft.date=2019-07-03&rft_id=info:doi/10.17632/t6t82b2h7h.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_t6t82b2h7h_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true