Dataset for: Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency
This dataset is an extension of our research titled "Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency," which is currently under review. For utmost reproducibility, we've included a ZIP file and a Python file: The ZIP f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Nabil Anan Orka |
description | This dataset is an extension of our research titled "Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency," which is currently under review. For utmost reproducibility, we've included a ZIP file and a Python file:
The ZIP file, "dataset_images," comprises 2700 segmented RGB images spanning 9 classes. The dataset is balanced and divided into train, validation, and test sets with a ratio of 0.70:0.15:0.15.
Class distribution of the dataset:
Crop | Class | Number of samples
---|---|---
Ash gourd | Healthy | 300
Ash gourd | N deficiency | 300
Ash gourd | K deficiency | 300
---|---|---
Bitter gourd | Healthy | 300
Bitter gourd | N deficiency | 300
Bitter gourd | K deficiency | 300
---|---|---
Snake gourd | Healthy | 300
Snake gourd | N deficiency | 300
Snake gourd | K deficiency | 300
---|---|---
| | Total = 2700
The converter.py file is a Python class file for transforming the RGB images to HSV, CIELAB, and our proposed color space - Nutrispace. The .py file contains a short documentation within it for the ease of use. |
doi_str_mv | 10.17632/t2k7z4wsj4.1 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_t2k7z4wsj4_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_t2k7z4wsj4_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_t2k7z4wsj4_13</originalsourceid><addsrcrecordid>eNqVT7FuwjAU9MJQUcbu7wegMUSNxNaGIAaUhe7Wq_MCpq4d2S-gsPTXa2ilzkx3ujud7oR4ktlMFi-L-TPPP4tLfo7HfCYfxPcKGSMxtD4soe45mNihpiW8Qu1PZKH01gfYXUVgD5U7oEt0RdTBljA44_bwljoaqDDYITlMmo134Fsoe92HD8Pxt_sqo02R1mhDTg-PYtSijTT5w7GYrqv3cjNt0i5tmFQXzBeGQclM3Q6o_wNKLu7N_wDBbVad</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Dataset for: Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency</title><source>DataCite</source><creator>Nabil Anan Orka</creator><creatorcontrib>Nabil Anan Orka</creatorcontrib><description>This dataset is an extension of our research titled "Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency," which is currently under review. For utmost reproducibility, we've included a ZIP file and a Python file:
The ZIP file, "dataset_images," comprises 2700 segmented RGB images spanning 9 classes. The dataset is balanced and divided into train, validation, and test sets with a ratio of 0.70:0.15:0.15.
Class distribution of the dataset:
Crop | Class | Number of samples
---|---|---
Ash gourd | Healthy | 300
Ash gourd | N deficiency | 300
Ash gourd | K deficiency | 300
---|---|---
Bitter gourd | Healthy | 300
Bitter gourd | N deficiency | 300
Bitter gourd | K deficiency | 300
---|---|---
Snake gourd | Healthy | 300
Snake gourd | N deficiency | 300
Snake gourd | K deficiency | 300
---|---|---
| | Total = 2700
The converter.py file is a Python class file for transforming the RGB images to HSV, CIELAB, and our proposed color space - Nutrispace. The .py file contains a short documentation within it for the ease of use.</description><identifier>DOI: 10.17632/t2k7z4wsj4.1</identifier><language>eng</language><publisher>Mendeley</publisher><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/t2k7z4wsj4.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nabil Anan Orka</creatorcontrib><title>Dataset for: Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency</title><description>This dataset is an extension of our research titled "Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency," which is currently under review. For utmost reproducibility, we've included a ZIP file and a Python file:
The ZIP file, "dataset_images," comprises 2700 segmented RGB images spanning 9 classes. The dataset is balanced and divided into train, validation, and test sets with a ratio of 0.70:0.15:0.15.
Class distribution of the dataset:
Crop | Class | Number of samples
---|---|---
Ash gourd | Healthy | 300
Ash gourd | N deficiency | 300
Ash gourd | K deficiency | 300
---|---|---
Bitter gourd | Healthy | 300
Bitter gourd | N deficiency | 300
Bitter gourd | K deficiency | 300
---|---|---
Snake gourd | Healthy | 300
Snake gourd | N deficiency | 300
Snake gourd | K deficiency | 300
---|---|---
| | Total = 2700
The converter.py file is a Python class file for transforming the RGB images to HSV, CIELAB, and our proposed color space - Nutrispace. The .py file contains a short documentation within it for the ease of use.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVT7FuwjAU9MJQUcbu7wegMUSNxNaGIAaUhe7Wq_MCpq4d2S-gsPTXa2ilzkx3ujud7oR4ktlMFi-L-TPPP4tLfo7HfCYfxPcKGSMxtD4soe45mNihpiW8Qu1PZKH01gfYXUVgD5U7oEt0RdTBljA44_bwljoaqDDYITlMmo134Fsoe92HD8Pxt_sqo02R1mhDTg-PYtSijTT5w7GYrqv3cjNt0i5tmFQXzBeGQclM3Q6o_wNKLu7N_wDBbVad</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Nabil Anan Orka</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20230822</creationdate><title>Dataset for: Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency</title><author>Nabil Anan Orka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_t2k7z4wsj4_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nabil Anan Orka</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nabil Anan Orka</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Dataset for: Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency</title><date>2023-08-22</date><risdate>2023</risdate><abstract>This dataset is an extension of our research titled "Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency," which is currently under review. For utmost reproducibility, we've included a ZIP file and a Python file:
The ZIP file, "dataset_images," comprises 2700 segmented RGB images spanning 9 classes. The dataset is balanced and divided into train, validation, and test sets with a ratio of 0.70:0.15:0.15.
Class distribution of the dataset:
Crop | Class | Number of samples
---|---|---
Ash gourd | Healthy | 300
Ash gourd | N deficiency | 300
Ash gourd | K deficiency | 300
---|---|---
Bitter gourd | Healthy | 300
Bitter gourd | N deficiency | 300
Bitter gourd | K deficiency | 300
---|---|---
Snake gourd | Healthy | 300
Snake gourd | N deficiency | 300
Snake gourd | K deficiency | 300
---|---|---
| | Total = 2700
The converter.py file is a Python class file for transforming the RGB images to HSV, CIELAB, and our proposed color space - Nutrispace. The .py file contains a short documentation within it for the ease of use.</abstract><pub>Mendeley</pub><doi>10.17632/t2k7z4wsj4.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/t2k7z4wsj4.1 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_t2k7z4wsj4_1 |
source | DataCite |
title | Dataset for: Nutrispace: A Novel Color Space to Enhance Deep Learning Based Early Detection of Cucurbits Nutritional Deficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Nabil%20Anan%20Orka&rft.date=2023-08-22&rft_id=info:doi/10.17632/t2k7z4wsj4.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_t2k7z4wsj4_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |