Development and Validation Of The Large Nodule Radiomics Predictive Vector (LN-RPV)

Large lung nodules are not currently stratified well by existing clinical guidelines. Here we provide the data needed to generate the 'large nodule radiomics predictive vector' as described in 'A Radiomics-Based Decision Support Tool Improves Lung Cancer Diagnosis In Combination With...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Benjamin Hunter
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Benjamin Hunter
description Large lung nodules are not currently stratified well by existing clinical guidelines. Here we provide the data needed to generate the 'large nodule radiomics predictive vector' as described in 'A Radiomics-Based Decision Support Tool Improves Lung Cancer Diagnosis In Combination With The Herder Score in Large Lung Nodules', published in EBioMedicine. This model is able to classify large lung nodules according to cancer risk. The radiomics features were extracted from manual nodule segmentations using TexLab 2.0. The 'Outcome' column refers to the cancer status of the nodule (0: benign, 1: malignant). Access to the source images or clinicodemographic data will be considered on request to Dr. Richard Lee (richard.lee@rmh.nhs.uk).
doi_str_mv 10.17632/rz72hs5dvg
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_rz72hs5dvg</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_rz72hs5dvg</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_rz72hs5dvg3</originalsourceid><addsrcrecordid>eNqVjrsKwjAUQLM4iDr5A3dUpNoH2g_wgUOpRUvXcElu20DalDQW9OsVEZydznI4HMbmgb8O4l0UbuwzDut-K4dqzG4HGkibrqHWAbYSCtRKolOmhUsJeU2QoK0IUiPvmuCKUplGiR4yS1IJpwaCgoQzFhZJ6l2zYjlloxJ1T7MvJ2x1Oub7s_fuolCOeGdVg_bBA59_lvhvKfrPfgHXFkT4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Development and Validation Of The Large Nodule Radiomics Predictive Vector (LN-RPV)</title><source>DataCite</source><creator>Benjamin Hunter</creator><creatorcontrib>Benjamin Hunter</creatorcontrib><description>Large lung nodules are not currently stratified well by existing clinical guidelines. Here we provide the data needed to generate the 'large nodule radiomics predictive vector' as described in 'A Radiomics-Based Decision Support Tool Improves Lung Cancer Diagnosis In Combination With The Herder Score in Large Lung Nodules', published in EBioMedicine. This model is able to classify large lung nodules according to cancer risk. The radiomics features were extracted from manual nodule segmentations using TexLab 2.0. The 'Outcome' column refers to the cancer status of the nodule (0: benign, 1: malignant). Access to the source images or clinicodemographic data will be considered on request to Dr. Richard Lee (richard.lee@rmh.nhs.uk).</description><identifier>DOI: 10.17632/rz72hs5dvg</identifier><language>eng</language><publisher>Mendeley</publisher><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/rz72hs5dvg$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Benjamin Hunter</creatorcontrib><title>Development and Validation Of The Large Nodule Radiomics Predictive Vector (LN-RPV)</title><description>Large lung nodules are not currently stratified well by existing clinical guidelines. Here we provide the data needed to generate the 'large nodule radiomics predictive vector' as described in 'A Radiomics-Based Decision Support Tool Improves Lung Cancer Diagnosis In Combination With The Herder Score in Large Lung Nodules', published in EBioMedicine. This model is able to classify large lung nodules according to cancer risk. The radiomics features were extracted from manual nodule segmentations using TexLab 2.0. The 'Outcome' column refers to the cancer status of the nodule (0: benign, 1: malignant). Access to the source images or clinicodemographic data will be considered on request to Dr. Richard Lee (richard.lee@rmh.nhs.uk).</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrsKwjAUQLM4iDr5A3dUpNoH2g_wgUOpRUvXcElu20DalDQW9OsVEZydznI4HMbmgb8O4l0UbuwzDut-K4dqzG4HGkibrqHWAbYSCtRKolOmhUsJeU2QoK0IUiPvmuCKUplGiR4yS1IJpwaCgoQzFhZJ6l2zYjlloxJ1T7MvJ2x1Oub7s_fuolCOeGdVg_bBA59_lvhvKfrPfgHXFkT4</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Benjamin Hunter</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20221018</creationdate><title>Development and Validation Of The Large Nodule Radiomics Predictive Vector (LN-RPV)</title><author>Benjamin Hunter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_rz72hs5dvg3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Benjamin Hunter</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benjamin Hunter</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Development and Validation Of The Large Nodule Radiomics Predictive Vector (LN-RPV)</title><date>2022-10-18</date><risdate>2022</risdate><abstract>Large lung nodules are not currently stratified well by existing clinical guidelines. Here we provide the data needed to generate the 'large nodule radiomics predictive vector' as described in 'A Radiomics-Based Decision Support Tool Improves Lung Cancer Diagnosis In Combination With The Herder Score in Large Lung Nodules', published in EBioMedicine. This model is able to classify large lung nodules according to cancer risk. The radiomics features were extracted from manual nodule segmentations using TexLab 2.0. The 'Outcome' column refers to the cancer status of the nodule (0: benign, 1: malignant). Access to the source images or clinicodemographic data will be considered on request to Dr. Richard Lee (richard.lee@rmh.nhs.uk).</abstract><pub>Mendeley</pub><doi>10.17632/rz72hs5dvg</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/rz72hs5dvg
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_rz72hs5dvg
source DataCite
title Development and Validation Of The Large Nodule Radiomics Predictive Vector (LN-RPV)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Benjamin%20Hunter&rft.date=2022-10-18&rft_id=info:doi/10.17632/rz72hs5dvg&rft_dat=%3Cdatacite_PQ8%3E10_17632_rz72hs5dvg%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true