Dataset for C-O bond activation using ultra-low loading noble metal catalysts on moderately reducible oxides
Selective C-O activation of complex multifunctional molecules is an essential step for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C-O bond scission via the reverse Mars-van Krevelen mechanism, the most active oxides undergo bulk redu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Fu, Jiayi |
description | Selective C-O activation of complex multifunctional molecules is an essential step for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C-O bond scission via the reverse Mars-van Krevelen mechanism, the most active oxides undergo bulk reduction during reaction. Here, we report a strategy for C-O bonds activation by surface doping moderately reducible oxides with ultra-low loading of noble metals. We demonstrate the principle using highly dispersed Pt anchored onto TiO2 for furfuryl alcohol conversion to methyl furan. A combination of density functional theory calculations, catalyst characterization (STEM, EPR, FTIR and XAS), kinetic experiments, and microkinetic modelling expose significant C-O activation rate enhancement, without either bulk catalyst reduction or unselective ring hydrogenation. A methodology is introduced to quantify various types of sites, revealing that the cationic redox Pt on TiO2 surface is more active than metallic sites for C-O bond activation. |
doi_str_mv | 10.17632/pgmcmfb243.1 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_pgmcmfb243_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_pgmcmfb243_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_pgmcmfb243_13</originalsourceid><addsrcrecordid>eNqVjjsOwjAQRN1QIKCk3wsEMEFwAD6io6G3NvYmsrSOkb0BcnsCQqKmGmk08_SUmuvVQu-25Xp5a4INdbXelAs9VnxAwUwCdUywLy5QxdYBWvF3FB9b6LJvG-hYEhYcH8AR3btpY8UEgQQZ7MDgPkuG4RCio4RC3EMi11n_3sWnd5SnalQjZ5p9c6KK0_G6PxduAFgvZG7JB0y90SvzsTU_W6PLf_cvCOZRAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Dataset for C-O bond activation using ultra-low loading noble metal catalysts on moderately reducible oxides</title><source>DataCite</source><creator>Fu, Jiayi</creator><creatorcontrib>Fu, Jiayi</creatorcontrib><description>Selective C-O activation of complex multifunctional molecules is an essential step for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C-O bond scission via the reverse Mars-van Krevelen mechanism, the most active oxides undergo bulk reduction during reaction. Here, we report a strategy for C-O bonds activation by surface doping moderately reducible oxides with ultra-low loading of noble metals. We demonstrate the principle using highly dispersed Pt anchored onto TiO2 for furfuryl alcohol conversion to methyl furan. A combination of density functional theory calculations, catalyst characterization (STEM, EPR, FTIR and XAS), kinetic experiments, and microkinetic modelling expose significant C-O activation rate enhancement, without either bulk catalyst reduction or unselective ring hydrogenation. A methodology is introduced to quantify various types of sites, revealing that the cationic redox Pt on TiO2 surface is more active than metallic sites for C-O bond activation.</description><identifier>DOI: 10.17632/pgmcmfb243.1</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Biomass Catalysis ; Catalysis</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/pgmcmfb243.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fu, Jiayi</creatorcontrib><title>Dataset for C-O bond activation using ultra-low loading noble metal catalysts on moderately reducible oxides</title><description>Selective C-O activation of complex multifunctional molecules is an essential step for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C-O bond scission via the reverse Mars-van Krevelen mechanism, the most active oxides undergo bulk reduction during reaction. Here, we report a strategy for C-O bonds activation by surface doping moderately reducible oxides with ultra-low loading of noble metals. We demonstrate the principle using highly dispersed Pt anchored onto TiO2 for furfuryl alcohol conversion to methyl furan. A combination of density functional theory calculations, catalyst characterization (STEM, EPR, FTIR and XAS), kinetic experiments, and microkinetic modelling expose significant C-O activation rate enhancement, without either bulk catalyst reduction or unselective ring hydrogenation. A methodology is introduced to quantify various types of sites, revealing that the cationic redox Pt on TiO2 surface is more active than metallic sites for C-O bond activation.</description><subject>Biomass Catalysis</subject><subject>Catalysis</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjjsOwjAQRN1QIKCk3wsEMEFwAD6io6G3NvYmsrSOkb0BcnsCQqKmGmk08_SUmuvVQu-25Xp5a4INdbXelAs9VnxAwUwCdUywLy5QxdYBWvF3FB9b6LJvG-hYEhYcH8AR3btpY8UEgQQZ7MDgPkuG4RCio4RC3EMi11n_3sWnd5SnalQjZ5p9c6KK0_G6PxduAFgvZG7JB0y90SvzsTU_W6PLf_cvCOZRAg</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Fu, Jiayi</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200203</creationdate><title>Dataset for C-O bond activation using ultra-low loading noble metal catalysts on moderately reducible oxides</title><author>Fu, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_pgmcmfb243_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomass Catalysis</topic><topic>Catalysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jiayi</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Jiayi</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Dataset for C-O bond activation using ultra-low loading noble metal catalysts on moderately reducible oxides</title><date>2020-02-03</date><risdate>2020</risdate><abstract>Selective C-O activation of complex multifunctional molecules is an essential step for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C-O bond scission via the reverse Mars-van Krevelen mechanism, the most active oxides undergo bulk reduction during reaction. Here, we report a strategy for C-O bonds activation by surface doping moderately reducible oxides with ultra-low loading of noble metals. We demonstrate the principle using highly dispersed Pt anchored onto TiO2 for furfuryl alcohol conversion to methyl furan. A combination of density functional theory calculations, catalyst characterization (STEM, EPR, FTIR and XAS), kinetic experiments, and microkinetic modelling expose significant C-O activation rate enhancement, without either bulk catalyst reduction or unselective ring hydrogenation. A methodology is introduced to quantify various types of sites, revealing that the cationic redox Pt on TiO2 surface is more active than metallic sites for C-O bond activation.</abstract><pub>Mendeley</pub><doi>10.17632/pgmcmfb243.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/pgmcmfb243.1 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_pgmcmfb243_1 |
source | DataCite |
subjects | Biomass Catalysis Catalysis |
title | Dataset for C-O bond activation using ultra-low loading noble metal catalysts on moderately reducible oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Fu,%20Jiayi&rft.date=2020-02-03&rft_id=info:doi/10.17632/pgmcmfb243.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_pgmcmfb243_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |