A Diffusion Model-Generated Forest Fire Dataset

This dataset consists of 2,204 AI-generated images, created using a Stable Diffusion model. The images are organized into two distinct folders: Fire: Contains 1,102 images depicting synthetic representations of forest fires. Non-Fire: Contains 1,102 images showing various forest scenes without any f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Imdadul Alam, Gazi Mohammad, Tasnia, Naima, Biswas, Tapu, Hossen, Md. Jakir, Tanim, Sharia Arfin, Ullah Miah, Md Saef
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Imdadul Alam, Gazi Mohammad
Tasnia, Naima
Biswas, Tapu
Hossen, Md. Jakir
Tanim, Sharia Arfin
Ullah Miah, Md Saef
description This dataset consists of 2,204 AI-generated images, created using a Stable Diffusion model. The images are organized into two distinct folders: Fire: Contains 1,102 images depicting synthetic representations of forest fires. Non-Fire: Contains 1,102 images showing various forest scenes without any fire activity. Each image has a resolution of 150x150 pixels, optimized for use in machine learning tasks such as classification, detection, and environmental monitoring. Purpose The dataset is intended to aid research and development in areas such as: Forest fire detection and prevention using AI. Benchmarking deep learning models for image classification tasks. Studying the environmental impact of forest fires. Key Features Generated with Stable Diffusion, ensuring high-quality and varied synthetic visuals. Balanced dataset structure (equal representation of fire and non-fire images). Small image size (150x150), suitable for lightweight model training and testing.
doi_str_mv 10.17632/nwzcm9ckrt.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_nwzcm9ckrt_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_nwzcm9ckrt_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_nwzcm9ckrt_13</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNDczNtLPK69KzrVMzi4q0TPkZNB3VHDJTEsrLc7Mz1PwzU9JzdF1T81LLUosSU1RcMsvSi0uUXDLLEpVcEksSSxOLeFhYE1LzClO5YXS3Ay6bq4hzh66KUD55MyS1PiCoszcxKLKeEODeLCF8QgL4w2NSVUPAOtkO1k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A Diffusion Model-Generated Forest Fire Dataset</title><source>DataCite</source><creator>Imdadul Alam, Gazi Mohammad ; Tasnia, Naima ; Biswas, Tapu ; Hossen, Md. Jakir ; Tanim, Sharia Arfin ; Ullah Miah, Md Saef</creator><creatorcontrib>Imdadul Alam, Gazi Mohammad ; Tasnia, Naima ; Biswas, Tapu ; Hossen, Md. Jakir ; Tanim, Sharia Arfin ; Ullah Miah, Md Saef</creatorcontrib><description>This dataset consists of 2,204 AI-generated images, created using a Stable Diffusion model. The images are organized into two distinct folders: Fire: Contains 1,102 images depicting synthetic representations of forest fires. Non-Fire: Contains 1,102 images showing various forest scenes without any fire activity. Each image has a resolution of 150x150 pixels, optimized for use in machine learning tasks such as classification, detection, and environmental monitoring. Purpose The dataset is intended to aid research and development in areas such as: Forest fire detection and prevention using AI. Benchmarking deep learning models for image classification tasks. Studying the environmental impact of forest fires. Key Features Generated with Stable Diffusion, ensuring high-quality and varied synthetic visuals. Balanced dataset structure (equal representation of fire and non-fire images). Small image size (150x150), suitable for lightweight model training and testing.</description><identifier>DOI: 10.17632/nwzcm9ckrt.1</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Image Classification ; Object Detection</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-7636-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/nwzcm9ckrt.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Imdadul Alam, Gazi Mohammad</creatorcontrib><creatorcontrib>Tasnia, Naima</creatorcontrib><creatorcontrib>Biswas, Tapu</creatorcontrib><creatorcontrib>Hossen, Md. Jakir</creatorcontrib><creatorcontrib>Tanim, Sharia Arfin</creatorcontrib><creatorcontrib>Ullah Miah, Md Saef</creatorcontrib><title>A Diffusion Model-Generated Forest Fire Dataset</title><description>This dataset consists of 2,204 AI-generated images, created using a Stable Diffusion model. The images are organized into two distinct folders: Fire: Contains 1,102 images depicting synthetic representations of forest fires. Non-Fire: Contains 1,102 images showing various forest scenes without any fire activity. Each image has a resolution of 150x150 pixels, optimized for use in machine learning tasks such as classification, detection, and environmental monitoring. Purpose The dataset is intended to aid research and development in areas such as: Forest fire detection and prevention using AI. Benchmarking deep learning models for image classification tasks. Studying the environmental impact of forest fires. Key Features Generated with Stable Diffusion, ensuring high-quality and varied synthetic visuals. Balanced dataset structure (equal representation of fire and non-fire images). Small image size (150x150), suitable for lightweight model training and testing.</description><subject>Image Classification</subject><subject>Object Detection</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNDczNtLPK69KzrVMzi4q0TPkZNB3VHDJTEsrLc7Mz1PwzU9JzdF1T81LLUosSU1RcMsvSi0uUXDLLEpVcEksSSxOLeFhYE1LzClO5YXS3Ay6bq4hzh66KUD55MyS1PiCoszcxKLKeEODeLCF8QgL4w2NSVUPAOtkO1k</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Imdadul Alam, Gazi Mohammad</creator><creator>Tasnia, Naima</creator><creator>Biswas, Tapu</creator><creator>Hossen, Md. Jakir</creator><creator>Tanim, Sharia Arfin</creator><creator>Ullah Miah, Md Saef</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0009-0001-7636-990X</orcidid></search><sort><creationdate>20241204</creationdate><title>A Diffusion Model-Generated Forest Fire Dataset</title><author>Imdadul Alam, Gazi Mohammad ; Tasnia, Naima ; Biswas, Tapu ; Hossen, Md. Jakir ; Tanim, Sharia Arfin ; Ullah Miah, Md Saef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_nwzcm9ckrt_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image Classification</topic><topic>Object Detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Imdadul Alam, Gazi Mohammad</creatorcontrib><creatorcontrib>Tasnia, Naima</creatorcontrib><creatorcontrib>Biswas, Tapu</creatorcontrib><creatorcontrib>Hossen, Md. Jakir</creatorcontrib><creatorcontrib>Tanim, Sharia Arfin</creatorcontrib><creatorcontrib>Ullah Miah, Md Saef</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imdadul Alam, Gazi Mohammad</au><au>Tasnia, Naima</au><au>Biswas, Tapu</au><au>Hossen, Md. Jakir</au><au>Tanim, Sharia Arfin</au><au>Ullah Miah, Md Saef</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A Diffusion Model-Generated Forest Fire Dataset</title><date>2024-12-04</date><risdate>2024</risdate><abstract>This dataset consists of 2,204 AI-generated images, created using a Stable Diffusion model. The images are organized into two distinct folders: Fire: Contains 1,102 images depicting synthetic representations of forest fires. Non-Fire: Contains 1,102 images showing various forest scenes without any fire activity. Each image has a resolution of 150x150 pixels, optimized for use in machine learning tasks such as classification, detection, and environmental monitoring. Purpose The dataset is intended to aid research and development in areas such as: Forest fire detection and prevention using AI. Benchmarking deep learning models for image classification tasks. Studying the environmental impact of forest fires. Key Features Generated with Stable Diffusion, ensuring high-quality and varied synthetic visuals. Balanced dataset structure (equal representation of fire and non-fire images). Small image size (150x150), suitable for lightweight model training and testing.</abstract><pub>Mendeley Data</pub><doi>10.17632/nwzcm9ckrt.1</doi><orcidid>https://orcid.org/0009-0001-7636-990X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/nwzcm9ckrt.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_nwzcm9ckrt_1
source DataCite
subjects Image Classification
Object Detection
title A Diffusion Model-Generated Forest Fire Dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Imdadul%20Alam,%20Gazi%20Mohammad&rft.date=2024-12-04&rft_id=info:doi/10.17632/nwzcm9ckrt.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_nwzcm9ckrt_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true