SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector
In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need f...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kundu, Seeboli Ghosh Kundu, Avisek Sahu, Santosh Kumar Kalsi, Suchi Siddhapura, Akshita Badgayan, Nitesh Dhar |
description | In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service. |
doi_str_mv | 10.17632/npg4jn2s2v.1 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_npg4jn2s2v_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_npg4jn2s2v_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_npg4jn2s2v_13</originalsourceid><addsrcrecordid>eNqVzr0KwkAQBOBrLEQt7fcF1FwiCnZR_CkUJIrtsSRnshL35O4MJE9vENHaZqaZD0aIoQzGcj6Lwgk_8umNQxdWY9kV5qTZ072NCzUL2OtKW8yJc0jMcp2cEYjhWPvCMFyNhTirkFOdwddBzFjWjhwgZ3Ah98SSGvTUitb6QsPmsNq2IPXG9kXniqXTg0_3xGizPq92oww9puS1eli6o62VDNT7sPodVjL6d_8Cr-FRYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><source>DataCite</source><creator>Kundu, Seeboli Ghosh ; Kundu, Avisek ; Sahu, Santosh Kumar ; Kalsi, Suchi ; Siddhapura, Akshita ; Badgayan, Nitesh Dhar</creator><creatorcontrib>Kundu, Seeboli Ghosh ; Kundu, Avisek ; Sahu, Santosh Kumar ; Kalsi, Suchi ; Siddhapura, Akshita ; Badgayan, Nitesh Dhar</creatorcontrib><description>In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service.</description><identifier>DOI: 10.17632/npg4jn2s2v.1</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Ayurveda ; Consumer Behavior</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/npg4jn2s2v.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kundu, Seeboli Ghosh</creatorcontrib><creatorcontrib>Kundu, Avisek</creatorcontrib><creatorcontrib>Sahu, Santosh Kumar</creatorcontrib><creatorcontrib>Kalsi, Suchi</creatorcontrib><creatorcontrib>Siddhapura, Akshita</creatorcontrib><creatorcontrib>Badgayan, Nitesh Dhar</creatorcontrib><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><description>In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service.</description><subject>Ayurveda</subject><subject>Consumer Behavior</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzr0KwkAQBOBrLEQt7fcF1FwiCnZR_CkUJIrtsSRnshL35O4MJE9vENHaZqaZD0aIoQzGcj6Lwgk_8umNQxdWY9kV5qTZ072NCzUL2OtKW8yJc0jMcp2cEYjhWPvCMFyNhTirkFOdwddBzFjWjhwgZ3Ah98SSGvTUitb6QsPmsNq2IPXG9kXniqXTg0_3xGizPq92oww9puS1eli6o62VDNT7sPodVjL6d_8Cr-FRYw</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Kundu, Seeboli Ghosh</creator><creator>Kundu, Avisek</creator><creator>Sahu, Santosh Kumar</creator><creator>Kalsi, Suchi</creator><creator>Siddhapura, Akshita</creator><creator>Badgayan, Nitesh Dhar</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20241104</creationdate><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><author>Kundu, Seeboli Ghosh ; Kundu, Avisek ; Sahu, Santosh Kumar ; Kalsi, Suchi ; Siddhapura, Akshita ; Badgayan, Nitesh Dhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_npg4jn2s2v_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ayurveda</topic><topic>Consumer Behavior</topic><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Seeboli Ghosh</creatorcontrib><creatorcontrib>Kundu, Avisek</creatorcontrib><creatorcontrib>Sahu, Santosh Kumar</creatorcontrib><creatorcontrib>Kalsi, Suchi</creatorcontrib><creatorcontrib>Siddhapura, Akshita</creatorcontrib><creatorcontrib>Badgayan, Nitesh Dhar</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kundu, Seeboli Ghosh</au><au>Kundu, Avisek</au><au>Sahu, Santosh Kumar</au><au>Kalsi, Suchi</au><au>Siddhapura, Akshita</au><au>Badgayan, Nitesh Dhar</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><date>2024-11-04</date><risdate>2024</risdate><abstract>In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service.</abstract><pub>Mendeley Data</pub><doi>10.17632/npg4jn2s2v.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/npg4jn2s2v.1 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_npg4jn2s2v_1 |
source | DataCite |
subjects | Ayurveda Consumer Behavior |
title | SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Kundu,%20Seeboli%20Ghosh&rft.date=2024-11-04&rft_id=info:doi/10.17632/npg4jn2s2v.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_npg4jn2s2v_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |