SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector

In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kundu, Seeboli Ghosh, Kundu, Avisek, Sahu, Santosh Kumar, Kalsi, Suchi, Siddhapura, Akshita, Badgayan, Nitesh Dhar
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kundu, Seeboli Ghosh
Kundu, Avisek
Sahu, Santosh Kumar
Kalsi, Suchi
Siddhapura, Akshita
Badgayan, Nitesh Dhar
description In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service.
doi_str_mv 10.17632/npg4jn2s2v.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_npg4jn2s2v_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_npg4jn2s2v_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_npg4jn2s2v_13</originalsourceid><addsrcrecordid>eNqVzr0KwkAQBOBrLEQt7fcF1FwiCnZR_CkUJIrtsSRnshL35O4MJE9vENHaZqaZD0aIoQzGcj6Lwgk_8umNQxdWY9kV5qTZ072NCzUL2OtKW8yJc0jMcp2cEYjhWPvCMFyNhTirkFOdwddBzFjWjhwgZ3Ah98SSGvTUitb6QsPmsNq2IPXG9kXniqXTg0_3xGizPq92oww9puS1eli6o62VDNT7sPodVjL6d_8Cr-FRYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><source>DataCite</source><creator>Kundu, Seeboli Ghosh ; Kundu, Avisek ; Sahu, Santosh Kumar ; Kalsi, Suchi ; Siddhapura, Akshita ; Badgayan, Nitesh Dhar</creator><creatorcontrib>Kundu, Seeboli Ghosh ; Kundu, Avisek ; Sahu, Santosh Kumar ; Kalsi, Suchi ; Siddhapura, Akshita ; Badgayan, Nitesh Dhar</creatorcontrib><description>In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service.</description><identifier>DOI: 10.17632/npg4jn2s2v.1</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Ayurveda ; Consumer Behavior</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/npg4jn2s2v.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kundu, Seeboli Ghosh</creatorcontrib><creatorcontrib>Kundu, Avisek</creatorcontrib><creatorcontrib>Sahu, Santosh Kumar</creatorcontrib><creatorcontrib>Kalsi, Suchi</creatorcontrib><creatorcontrib>Siddhapura, Akshita</creatorcontrib><creatorcontrib>Badgayan, Nitesh Dhar</creatorcontrib><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><description>In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service.</description><subject>Ayurveda</subject><subject>Consumer Behavior</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzr0KwkAQBOBrLEQt7fcF1FwiCnZR_CkUJIrtsSRnshL35O4MJE9vENHaZqaZD0aIoQzGcj6Lwgk_8umNQxdWY9kV5qTZ072NCzUL2OtKW8yJc0jMcp2cEYjhWPvCMFyNhTirkFOdwddBzFjWjhwgZ3Ah98SSGvTUitb6QsPmsNq2IPXG9kXniqXTg0_3xGizPq92oww9puS1eli6o62VDNT7sPodVjL6d_8Cr-FRYw</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Kundu, Seeboli Ghosh</creator><creator>Kundu, Avisek</creator><creator>Sahu, Santosh Kumar</creator><creator>Kalsi, Suchi</creator><creator>Siddhapura, Akshita</creator><creator>Badgayan, Nitesh Dhar</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20241104</creationdate><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><author>Kundu, Seeboli Ghosh ; Kundu, Avisek ; Sahu, Santosh Kumar ; Kalsi, Suchi ; Siddhapura, Akshita ; Badgayan, Nitesh Dhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_npg4jn2s2v_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ayurveda</topic><topic>Consumer Behavior</topic><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Seeboli Ghosh</creatorcontrib><creatorcontrib>Kundu, Avisek</creatorcontrib><creatorcontrib>Sahu, Santosh Kumar</creatorcontrib><creatorcontrib>Kalsi, Suchi</creatorcontrib><creatorcontrib>Siddhapura, Akshita</creatorcontrib><creatorcontrib>Badgayan, Nitesh Dhar</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kundu, Seeboli Ghosh</au><au>Kundu, Avisek</au><au>Sahu, Santosh Kumar</au><au>Kalsi, Suchi</au><au>Siddhapura, Akshita</au><au>Badgayan, Nitesh Dhar</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector</title><date>2024-11-04</date><risdate>2024</risdate><abstract>In a data-driven world where governments and businesses seek insights from vast amounts of unstructured text data, sentiment analysis plays a pivotal role in decision-making. Sentiment analysis helps analyze cus-tomer experience, ultimately helping manage customer engagement. To build on this need for deeper sentiment understanding and scalable solutions, SentimentViz is an accelerator that leverages Python and chooses the best methodology for text-mining problems. It enables real-time analysis with robust visualization capabilities. In this study, the Sentiment Viz accelerator is leveraged to estimate the sentiment of 9 different Patanjali prod-ucts using a strong data science framework and best-of-the-class ML techniques. This accelerator can predict sentiment for various products and services, categorizing them as positive, negative, or neutral. Once deployed, it enables real-time sentiment mapping for any product or service.</abstract><pub>Mendeley Data</pub><doi>10.17632/npg4jn2s2v.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/npg4jn2s2v.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_npg4jn2s2v_1
source DataCite
subjects Ayurveda
Consumer Behavior
title SentimentViz: Leveraging RoBERTa in Python for Advanced Sentiment Analysis and Visualization in the FMCG Sector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Kundu,%20Seeboli%20Ghosh&rft.date=2024-11-04&rft_id=info:doi/10.17632/npg4jn2s2v.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_npg4jn2s2v_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true