Artificial Neural Network for Predicting Global Sub-Daily Tropospheric Wet Delay
These are the full results from "Artificial Neural Network for Predicting global sub-daily Tropospheric Wet Delay" for the selected 505 stations. They are divided into: 1- Raw time series of the 505 stations for (ZWD, Pressure, Temperature and Integrated Water Vapour). 2- The R values betw...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mohammed, Jareer |
description | These are the full results from "Artificial Neural Network for Predicting global sub-daily Tropospheric Wet Delay" for the selected 505 stations. They are divided into: 1- Raw time series of the 505 stations for (ZWD, Pressure, Temperature and Integrated Water Vapour). 2- The R values between the actual and the predicted ZWD. 3- The Predicted and actual ZWD. 4- The difference between the actual and predicted ZWD. 5- the inputs files for the ANN processing (the time series in dat format). |
doi_str_mv | 10.17632/hy767fh3rx.2 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_hy767fh3rx_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_hy767fh3rx_2</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_hy767fh3rx_23</originalsourceid><addsrcrecordid>eNqVjrsKwjAUQLM4iDq65wda-4B2FutjkoIFx3CbJu3FaMptiubvlSI4O53hnOEwto6jMM6zNNl0Ps9y3aX0CpM5K7fkUKNEMPysRprgnpZuXFviJakGpcNHy4_G1h97GeugADSeV2R7O_SdIpT8qhwvlAG_ZDMNZlCrLxcsOOyr3SlowIFEp0RPeAfyIo7EdCR-RyJJ_-3fvc5F-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Artificial Neural Network for Predicting Global Sub-Daily Tropospheric Wet Delay</title><source>DataCite</source><creator>Mohammed, Jareer</creator><creatorcontrib>Mohammed, Jareer</creatorcontrib><description>These are the full results from "Artificial Neural Network for Predicting global sub-daily Tropospheric Wet Delay" for the selected 505 stations. They are divided into: 1- Raw time series of the 505 stations for (ZWD, Pressure, Temperature and Integrated Water Vapour). 2- The R values between the actual and the predicted ZWD. 3- The Predicted and actual ZWD. 4- The difference between the actual and predicted ZWD. 5- the inputs files for the ANN processing (the time series in dat format).</description><identifier>DOI: 10.17632/hy767fh3rx.2</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Artificial Neural Networks ; Tropospheric Propagation Delays</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/hy767fh3rx.2$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mohammed, Jareer</creatorcontrib><title>Artificial Neural Network for Predicting Global Sub-Daily Tropospheric Wet Delay</title><description>These are the full results from "Artificial Neural Network for Predicting global sub-daily Tropospheric Wet Delay" for the selected 505 stations. They are divided into: 1- Raw time series of the 505 stations for (ZWD, Pressure, Temperature and Integrated Water Vapour). 2- The R values between the actual and the predicted ZWD. 3- The Predicted and actual ZWD. 4- The difference between the actual and predicted ZWD. 5- the inputs files for the ANN processing (the time series in dat format).</description><subject>Artificial Neural Networks</subject><subject>Tropospheric Propagation Delays</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrsKwjAUQLM4iDq65wda-4B2FutjkoIFx3CbJu3FaMptiubvlSI4O53hnOEwto6jMM6zNNl0Ps9y3aX0CpM5K7fkUKNEMPysRprgnpZuXFviJakGpcNHy4_G1h97GeugADSeV2R7O_SdIpT8qhwvlAG_ZDMNZlCrLxcsOOyr3SlowIFEp0RPeAfyIo7EdCR-RyJJ_-3fvc5F-g</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Mohammed, Jareer</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210129</creationdate><title>Artificial Neural Network for Predicting Global Sub-Daily Tropospheric Wet Delay</title><author>Mohammed, Jareer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_hy767fh3rx_23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Neural Networks</topic><topic>Tropospheric Propagation Delays</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Jareer</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, Jareer</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Artificial Neural Network for Predicting Global Sub-Daily Tropospheric Wet Delay</title><date>2021-01-29</date><risdate>2021</risdate><abstract>These are the full results from "Artificial Neural Network for Predicting global sub-daily Tropospheric Wet Delay" for the selected 505 stations. They are divided into: 1- Raw time series of the 505 stations for (ZWD, Pressure, Temperature and Integrated Water Vapour). 2- The R values between the actual and the predicted ZWD. 3- The Predicted and actual ZWD. 4- The difference between the actual and predicted ZWD. 5- the inputs files for the ANN processing (the time series in dat format).</abstract><pub>Mendeley</pub><doi>10.17632/hy767fh3rx.2</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/hy767fh3rx.2 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_hy767fh3rx_2 |
source | DataCite |
subjects | Artificial Neural Networks Tropospheric Propagation Delays |
title | Artificial Neural Network for Predicting Global Sub-Daily Tropospheric Wet Delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Mohammed,%20Jareer&rft.date=2021-01-29&rft_id=info:doi/10.17632/hy767fh3rx.2&rft_dat=%3Cdatacite_PQ8%3E10_17632_hy767fh3rx_2%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |