REMP: A Unique Dataset of Rare and Endangered Medicinal Plants in Bangladesh
In Bangladesh, there are significant number of medicinal plants, but currently no comprehensive record of these valuable species is publicly available. Alarmingly, some of these plants are in a precarious state of endangerment. Therefore, we are creating a unique dataset of Bangladesh's rare, e...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Islam, Mohammad Manzurul |
description | In Bangladesh, there are significant number of medicinal plants, but currently no comprehensive record of these valuable species is publicly available. Alarmingly, some of these plants are in a precarious state of endangerment. Therefore, we are creating a unique dataset of Bangladesh's rare, endangered, and threatened medicinal plants to support conservation efforts. It will help us to track and conserve endangered plant species, ensuring a more organized approach to research and preservation efforts. We conducted on-site visits to the National Botanical Garden and The Government Unani and Ayurvedic Medical College, capturing photographs of these plants in optimal sunlight conditions at various times of the day. This involved fieldwork, detailed image annotations, dataset organization, diversity augmentation, and contribution to the preservation of our natural heritage. We have collected a total of 16 types of rare and endangered medicinal plant leaf photos to create our unique dataset consisting of a total of 3494 images. This dataset will help researchers in biodiversity conservation through building efficient machine learning models and applying advanced machine learning techniques to identify rare and endangered medicinal plants. |
doi_str_mv | 10.17632/hnwrxg8zm8 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_hnwrxg8zm8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_hnwrxg8zm8</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_hnwrxg8zm83</originalsourceid><addsrcrecordid>eNpjYBA2NNAzNDczNtLPyCsvqki3qMq14GTwCXL1DbBScFQIzcssLE1VcEksSSxOLVHIT1MISixKVUjMS1FwzUtJzEtPLUpNUfBNTclMzsxLzFEIyEnMKylWyMxTcAJK5iSmpBZn8DCwpiXmFKfyQmluBm031xBnD90UoKnJmSWp8QVFmbmJRZXxhgbxYLfEI9xiTJpqAK2rQws</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>REMP: A Unique Dataset of Rare and Endangered Medicinal Plants in Bangladesh</title><source>DataCite</source><creator>Islam, Mohammad Manzurul</creator><creatorcontrib>Islam, Mohammad Manzurul</creatorcontrib><description>In Bangladesh, there are significant number of medicinal plants, but currently no comprehensive record of these valuable species is publicly available. Alarmingly, some of these plants are in a precarious state of endangerment. Therefore, we are creating a unique dataset of Bangladesh's rare, endangered, and threatened medicinal plants to support conservation efforts. It will help us to track and conserve endangered plant species, ensuring a more organized approach to research and preservation efforts. We conducted on-site visits to the National Botanical Garden and The Government Unani and Ayurvedic Medical College, capturing photographs of these plants in optimal sunlight conditions at various times of the day. This involved fieldwork, detailed image annotations, dataset organization, diversity augmentation, and contribution to the preservation of our natural heritage. We have collected a total of 16 types of rare and endangered medicinal plant leaf photos to create our unique dataset consisting of a total of 3494 images. This dataset will help researchers in biodiversity conservation through building efficient machine learning models and applying advanced machine learning techniques to identify rare and endangered medicinal plants.</description><identifier>DOI: 10.17632/hnwrxg8zm8</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Medicinal and Aromatic Plant Conservation</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3008-081X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/hnwrxg8zm8$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Islam, Mohammad Manzurul</creatorcontrib><title>REMP: A Unique Dataset of Rare and Endangered Medicinal Plants in Bangladesh</title><description>In Bangladesh, there are significant number of medicinal plants, but currently no comprehensive record of these valuable species is publicly available. Alarmingly, some of these plants are in a precarious state of endangerment. Therefore, we are creating a unique dataset of Bangladesh's rare, endangered, and threatened medicinal plants to support conservation efforts. It will help us to track and conserve endangered plant species, ensuring a more organized approach to research and preservation efforts. We conducted on-site visits to the National Botanical Garden and The Government Unani and Ayurvedic Medical College, capturing photographs of these plants in optimal sunlight conditions at various times of the day. This involved fieldwork, detailed image annotations, dataset organization, diversity augmentation, and contribution to the preservation of our natural heritage. We have collected a total of 16 types of rare and endangered medicinal plant leaf photos to create our unique dataset consisting of a total of 3494 images. This dataset will help researchers in biodiversity conservation through building efficient machine learning models and applying advanced machine learning techniques to identify rare and endangered medicinal plants.</description><subject>Medicinal and Aromatic Plant Conservation</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA2NNAzNDczNtLPyCsvqki3qMq14GTwCXL1DbBScFQIzcssLE1VcEksSSxOLVHIT1MISixKVUjMS1FwzUtJzEtPLUpNUfBNTclMzsxLzFEIyEnMKylWyMxTcAJK5iSmpBZn8DCwpiXmFKfyQmluBm031xBnD90UoKnJmSWp8QVFmbmJRZXxhgbxYLfEI9xiTJpqAK2rQws</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Islam, Mohammad Manzurul</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-3008-081X</orcidid></search><sort><creationdate>20240707</creationdate><title>REMP: A Unique Dataset of Rare and Endangered Medicinal Plants in Bangladesh</title><author>Islam, Mohammad Manzurul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_hnwrxg8zm83</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Medicinal and Aromatic Plant Conservation</topic><toplevel>online_resources</toplevel><creatorcontrib>Islam, Mohammad Manzurul</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Islam, Mohammad Manzurul</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>REMP: A Unique Dataset of Rare and Endangered Medicinal Plants in Bangladesh</title><date>2024-07-07</date><risdate>2024</risdate><abstract>In Bangladesh, there are significant number of medicinal plants, but currently no comprehensive record of these valuable species is publicly available. Alarmingly, some of these plants are in a precarious state of endangerment. Therefore, we are creating a unique dataset of Bangladesh's rare, endangered, and threatened medicinal plants to support conservation efforts. It will help us to track and conserve endangered plant species, ensuring a more organized approach to research and preservation efforts. We conducted on-site visits to the National Botanical Garden and The Government Unani and Ayurvedic Medical College, capturing photographs of these plants in optimal sunlight conditions at various times of the day. This involved fieldwork, detailed image annotations, dataset organization, diversity augmentation, and contribution to the preservation of our natural heritage. We have collected a total of 16 types of rare and endangered medicinal plant leaf photos to create our unique dataset consisting of a total of 3494 images. This dataset will help researchers in biodiversity conservation through building efficient machine learning models and applying advanced machine learning techniques to identify rare and endangered medicinal plants.</abstract><pub>Mendeley Data</pub><doi>10.17632/hnwrxg8zm8</doi><orcidid>https://orcid.org/0000-0002-3008-081X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/hnwrxg8zm8 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_hnwrxg8zm8 |
source | DataCite |
subjects | Medicinal and Aromatic Plant Conservation |
title | REMP: A Unique Dataset of Rare and Endangered Medicinal Plants in Bangladesh |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Islam,%20Mohammad%20Manzurul&rft.date=2024-07-07&rft_id=info:doi/10.17632/hnwrxg8zm8&rft_dat=%3Cdatacite_PQ8%3E10_17632_hnwrxg8zm8%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |