MAM-STM: A software for autonomous control of single moieties towards specific surface positions
In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ballantyne, John |
description | In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment. |
doi_str_mv | 10.17632/gtf3bt4v47.1 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_gtf3bt4v47_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_gtf3bt4v47_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_gtf3bt4v47_13</originalsourceid><addsrcrecordid>eNqVjrEKwjAQQLM4iDq63w-0GlsU3IooLp10jzFN5KDNldxV8e8VEZyd3vIePKXmepnrzbpYLW4SiquU93KT67G61FWdnc71FipgCvKwyUOgBHYQitTRwOAoSqIWKABjvLUeOkIv6BmE3kHDwL13GNABDylY56EnRkGKPFWjYFv2sy8nKjvsz7tj1lixDsWbPmFn09Popfkcmt-h0cW__gvAqEw0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</title><source>DataCite</source><creator>Ballantyne, John</creator><creatorcontrib>Ballantyne, John</creatorcontrib><description>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</description><identifier>DOI: 10.17632/gtf3bt4v47.1</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Computational Physics ; Condensed Matter Physics ; FOS: Physical sciences ; Machine Learning ; Microscopy ; Nanostructure ; Reinforcement Learning</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/gtf3bt4v47.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ballantyne, John</creatorcontrib><title>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</title><description>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</description><subject>Computational Physics</subject><subject>Condensed Matter Physics</subject><subject>FOS: Physical sciences</subject><subject>Machine Learning</subject><subject>Microscopy</subject><subject>Nanostructure</subject><subject>Reinforcement Learning</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrEKwjAQQLM4iDq63w-0GlsU3IooLp10jzFN5KDNldxV8e8VEZyd3vIePKXmepnrzbpYLW4SiquU93KT67G61FWdnc71FipgCvKwyUOgBHYQitTRwOAoSqIWKABjvLUeOkIv6BmE3kHDwL13GNABDylY56EnRkGKPFWjYFv2sy8nKjvsz7tj1lixDsWbPmFn09Popfkcmt-h0cW__gvAqEw0</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Ballantyne, John</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20240709</creationdate><title>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</title><author>Ballantyne, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_gtf3bt4v47_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Physics</topic><topic>Condensed Matter Physics</topic><topic>FOS: Physical sciences</topic><topic>Machine Learning</topic><topic>Microscopy</topic><topic>Nanostructure</topic><topic>Reinforcement Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Ballantyne, John</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ballantyne, John</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</title><date>2024-07-09</date><risdate>2024</risdate><abstract>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</abstract><pub>Mendeley Data</pub><doi>10.17632/gtf3bt4v47.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/gtf3bt4v47.1 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_gtf3bt4v47_1 |
source | DataCite |
subjects | Computational Physics Condensed Matter Physics FOS: Physical sciences Machine Learning Microscopy Nanostructure Reinforcement Learning |
title | MAM-STM: A software for autonomous control of single moieties towards specific surface positions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Ballantyne,%20John&rft.date=2024-07-09&rft_id=info:doi/10.17632/gtf3bt4v47.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_gtf3bt4v47_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |