Argumentative structure of scientific abstracts
In order to explore the possibility of leveraging discourse information for the identiffication of argumentative components and relations we add a new annotation layer to a subset of the Discourse Dependency TreeBank for Scientiffic Abstracts (SciDTB). [1] We introduce a ffine-grained annotation sch...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Accuosto, Pablo |
description | In order to explore the possibility of leveraging discourse information for the identiffication of argumentative components and relations we add a new annotation layer to a subset of the Discourse Dependency TreeBank for Scientiffic Abstracts (SciDTB). [1] We introduce a ffine-grained annotation schema aimed at capturing information that accounts for the specifficities of the scientiffic discourse, including the type of evidence that is offered to support a statement (e.g., background information, experimental data or interpretation of results). [1] Yang, A., Li, S.: SciDTB: Discourse dependency TreeBank for scientiffc abstracts. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018) (Volume 2: Short Papers). pp. 444{449. Association for Computational Linguistics, Melbourne, Australia (Jul 2018) |
doi_str_mv | 10.17632/gfcyx5s2tr |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_gfcyx5s2tr</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_gfcyx5s2tr</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_gfcyx5s2tr3</originalsourceid><addsrcrecordid>eNpjYBA2NNAzNDczNtJPT0uurDAtNiop4mTQdyxKL81NzStJLMksS1UoLikqTS4pLUpVyE9TKE7OBEpkpmUmKyQmAWUSk0uKeRhY0xJzilN5oTQ3g7aba4izh25KYklicmZJanxBUWZuYlFlvKFBPNi6eIR1xqSpBgBgTjq5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Argumentative structure of scientific abstracts</title><source>DataCite</source><creator>Accuosto, Pablo</creator><creatorcontrib>Accuosto, Pablo</creatorcontrib><description>In order to explore the possibility of leveraging discourse information for the identiffication of argumentative components and relations we add a new annotation layer to a subset of the Discourse Dependency TreeBank for Scientiffic Abstracts (SciDTB). [1] We introduce a ffine-grained annotation schema aimed at capturing information that accounts for the specifficities of the scientiffic discourse, including the type of evidence that is offered to support a statement (e.g., background information, experimental data or interpretation of results). [1] Yang, A., Li, S.: SciDTB: Discourse dependency TreeBank for scientiffc abstracts. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018) (Volume 2: Short Papers). pp. 444{449. Association for Computational Linguistics, Melbourne, Australia (Jul 2018)</description><identifier>DOI: 10.17632/gfcyx5s2tr</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Scientific Databases</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/gfcyx5s2tr$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Accuosto, Pablo</creatorcontrib><title>Argumentative structure of scientific abstracts</title><description>In order to explore the possibility of leveraging discourse information for the identiffication of argumentative components and relations we add a new annotation layer to a subset of the Discourse Dependency TreeBank for Scientiffic Abstracts (SciDTB). [1] We introduce a ffine-grained annotation schema aimed at capturing information that accounts for the specifficities of the scientiffic discourse, including the type of evidence that is offered to support a statement (e.g., background information, experimental data or interpretation of results). [1] Yang, A., Li, S.: SciDTB: Discourse dependency TreeBank for scientiffc abstracts. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018) (Volume 2: Short Papers). pp. 444{449. Association for Computational Linguistics, Melbourne, Australia (Jul 2018)</description><subject>Scientific Databases</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA2NNAzNDczNtJPT0uurDAtNiop4mTQdyxKL81NzStJLMksS1UoLikqTS4pLUpVyE9TKE7OBEpkpmUmKyQmAWUSk0uKeRhY0xJzilN5oTQ3g7aba4izh25KYklicmZJanxBUWZuYlFlvKFBPNi6eIR1xqSpBgBgTjq5</recordid><startdate>20200804</startdate><enddate>20200804</enddate><creator>Accuosto, Pablo</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200804</creationdate><title>Argumentative structure of scientific abstracts</title><author>Accuosto, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_gfcyx5s2tr3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Scientific Databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Accuosto, Pablo</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Accuosto, Pablo</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Argumentative structure of scientific abstracts</title><date>2020-08-04</date><risdate>2020</risdate><abstract>In order to explore the possibility of leveraging discourse information for the identiffication of argumentative components and relations we add a new annotation layer to a subset of the Discourse Dependency TreeBank for Scientiffic Abstracts (SciDTB). [1] We introduce a ffine-grained annotation schema aimed at capturing information that accounts for the specifficities of the scientiffic discourse, including the type of evidence that is offered to support a statement (e.g., background information, experimental data or interpretation of results). [1] Yang, A., Li, S.: SciDTB: Discourse dependency TreeBank for scientiffc abstracts. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018) (Volume 2: Short Papers). pp. 444{449. Association for Computational Linguistics, Melbourne, Australia (Jul 2018)</abstract><pub>Mendeley</pub><doi>10.17632/gfcyx5s2tr</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/gfcyx5s2tr |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_gfcyx5s2tr |
source | DataCite |
subjects | Scientific Databases |
title | Argumentative structure of scientific abstracts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Accuosto,%20Pablo&rft.date=2020-08-04&rft_id=info:doi/10.17632/gfcyx5s2tr&rft_dat=%3Cdatacite_PQ8%3E10_17632_gfcyx5s2tr%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |