Noise Signature Identification (Ambient Sounds in the University of South Florida, EBII)

We recorded the ambient sound of several rooms of the Engineering Building II of the University of South Florida. After filtering the sample to isolate ambient noise, we trained the system using both binary classification -whether or not an audio sample belonged to a specific room- and multi-class c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: González García, Cristian
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator González García, Cristian
description We recorded the ambient sound of several rooms of the Engineering Building II of the University of South Florida. After filtering the sample to isolate ambient noise, we trained the system using both binary classification -whether or not an audio sample belonged to a specific room- and multi-class classification, which room out of the 19 possible rooms, hallways, entries, and meeting spaces does the audio sample belong to. These files contain the ARFF files used to train and test the models in Weka (https://www.cs.waikato.ac.nz/ml/weka/). They are separated by rooms to the Binary classification, except one for the Multiclass classification.
doi_str_mv 10.17632/fm7cg3z3fj.2
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_fm7cg3z3fj_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_fm7cg3z3fj_2</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_fm7cg3z3fj_23</originalsourceid><addsrcrecordid>eNqVjj0LwjAURbM4iDq6v1HBVtuAnVVa7OJSBbcQm6R90iaSpEL99X4gODsduOcOh5BptAqjZE3jpWqTsqIPqq5hPCTng0EnocBKc99ZCbmQ2qPCkns0Gmab9oKvBQrTaeEANfhawknjXVqHvgej3s7XkDXGouALSLd5Ph-TgeKNk5MvRyTI0uNuHwjueYlespvFltueRSv2KWO_MhbTf_9P8IxIWA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Noise Signature Identification (Ambient Sounds in the University of South Florida, EBII)</title><source>DataCite</source><creator>González García, Cristian</creator><creatorcontrib>González García, Cristian</creatorcontrib><description>We recorded the ambient sound of several rooms of the Engineering Building II of the University of South Florida. After filtering the sample to isolate ambient noise, we trained the system using both binary classification -whether or not an audio sample belonged to a specific room- and multi-class classification, which room out of the 19 possible rooms, hallways, entries, and meeting spaces does the audio sample belong to. These files contain the ARFF files used to train and test the models in Weka (https://www.cs.waikato.ac.nz/ml/weka/). They are separated by rooms to the Binary classification, except one for the Multiclass classification.</description><identifier>DOI: 10.17632/fm7cg3z3fj.2</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Sound</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,1895</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/fm7cg3z3fj.2$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>González García, Cristian</creatorcontrib><title>Noise Signature Identification (Ambient Sounds in the University of South Florida, EBII)</title><description>We recorded the ambient sound of several rooms of the Engineering Building II of the University of South Florida. After filtering the sample to isolate ambient noise, we trained the system using both binary classification -whether or not an audio sample belonged to a specific room- and multi-class classification, which room out of the 19 possible rooms, hallways, entries, and meeting spaces does the audio sample belong to. These files contain the ARFF files used to train and test the models in Weka (https://www.cs.waikato.ac.nz/ml/weka/). They are separated by rooms to the Binary classification, except one for the Multiclass classification.</description><subject>Sound</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjj0LwjAURbM4iDq6v1HBVtuAnVVa7OJSBbcQm6R90iaSpEL99X4gODsduOcOh5BptAqjZE3jpWqTsqIPqq5hPCTng0EnocBKc99ZCbmQ2qPCkns0Gmab9oKvBQrTaeEANfhawknjXVqHvgej3s7XkDXGouALSLd5Ph-TgeKNk5MvRyTI0uNuHwjueYlespvFltueRSv2KWO_MhbTf_9P8IxIWA</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>González García, Cristian</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20231114</creationdate><title>Noise Signature Identification (Ambient Sounds in the University of South Florida, EBII)</title><author>González García, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_fm7cg3z3fj_23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Sound</topic><toplevel>online_resources</toplevel><creatorcontrib>González García, Cristian</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>González García, Cristian</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Noise Signature Identification (Ambient Sounds in the University of South Florida, EBII)</title><date>2023-11-14</date><risdate>2023</risdate><abstract>We recorded the ambient sound of several rooms of the Engineering Building II of the University of South Florida. After filtering the sample to isolate ambient noise, we trained the system using both binary classification -whether or not an audio sample belonged to a specific room- and multi-class classification, which room out of the 19 possible rooms, hallways, entries, and meeting spaces does the audio sample belong to. These files contain the ARFF files used to train and test the models in Weka (https://www.cs.waikato.ac.nz/ml/weka/). They are separated by rooms to the Binary classification, except one for the Multiclass classification.</abstract><pub>Mendeley Data</pub><doi>10.17632/fm7cg3z3fj.2</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/fm7cg3z3fj.2
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_fm7cg3z3fj_2
source DataCite
subjects Sound
title Noise Signature Identification (Ambient Sounds in the University of South Florida, EBII)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Gonz%C3%A1lez%20Garc%C3%ADa,%20Cristian&rft.date=2023-11-14&rft_id=info:doi/10.17632/fm7cg3z3fj.2&rft_dat=%3Cdatacite_PQ8%3E10_17632_fm7cg3z3fj_2%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true