QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations

We present the Mathematica package QMeS-Derivation, available on GitHub. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: John Ballantyne
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator John Ballantyne
description We present the Mathematica package QMeS-Derivation, available on GitHub. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples.
doi_str_mv 10.17632/dzb2z4tshd.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_dzb2z4tshd_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_dzb2z4tshd_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_dzb2z4tshd_13</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNDczNtJPqUoyqjIpKc5I0TPkZIgI9E0N1nVJLcosSyzJzM-zUvBNLMlIzQVykhMVChKTsxPTUxXS8osUgKIKxZW5Sfk5mckKKXANCvlpCmmleckgdmKOQmphKVi4mIeBNS0xpziVF0pzM-i6uYY4e-imJJYkJmeWpMYXFGXmJhZVxhsaxINdFo9wWbyhManqAek4Ss8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations</title><source>DataCite</source><creator>John Ballantyne</creator><creatorcontrib>John Ballantyne</creatorcontrib><description>We present the Mathematica package QMeS-Derivation, available on GitHub. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples.</description><identifier>DOI: 10.17632/dzb2z4tshd.1</identifier><language>eng</language><publisher>Mendeley</publisher><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/dzb2z4tshd.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>John Ballantyne</creatorcontrib><title>QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations</title><description>We present the Mathematica package QMeS-Derivation, available on GitHub. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNDczNtJPqUoyqjIpKc5I0TPkZIgI9E0N1nVJLcosSyzJzM-zUvBNLMlIzQVykhMVChKTsxPTUxXS8osUgKIKxZW5Sfk5mckKKXANCvlpCmmleckgdmKOQmphKVi4mIeBNS0xpziVF0pzM-i6uYY4e-imJJYkJmeWpMYXFGXmJhZVxhsaxINdFo9wWbyhManqAek4Ss8</recordid><startdate>20230320</startdate><enddate>20230320</enddate><creator>John Ballantyne</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20230320</creationdate><title>QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations</title><author>John Ballantyne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_dzb2z4tshd_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>John Ballantyne</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>John Ballantyne</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations</title><date>2023-03-20</date><risdate>2023</risdate><abstract>We present the Mathematica package QMeS-Derivation, available on GitHub. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples.</abstract><pub>Mendeley</pub><doi>10.17632/dzb2z4tshd.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/dzb2z4tshd.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_dzb2z4tshd_1
source DataCite
title QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=John%20Ballantyne&rft.date=2023-03-20&rft_id=info:doi/10.17632/dzb2z4tshd.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_dzb2z4tshd_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true