Confocal Imaging: Mitotic chromosomes are self-entangled and disentangle through a Topoisomerase II-dependent two stage exit from mitosis
The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact 3C, and propose that, in contrast, mitotic chromosomes ar...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Hildebrand, Erica |
description | The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact 3C, and propose that, in contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a Topoisomerase II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias Topoisomerase II activity towards decatenation. At the second stage, the loops are released, and formation of new entanglements is prevented by lower Topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed, in experiment and models, a normal interphase state cannot be acquired.
Original microscopy images supporting this dataset are included in this repository. |
doi_str_mv | 10.17632/ccd42j5jxr |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_ccd42j5jxr</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_ccd42j5jxr</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_ccd42j5jxr3</originalsourceid><addsrcrecordid>eNqVj7FOw0AQRK-hQCEVP7B9ZIiTABKtBcJFuvTW6m592ch3a90uwnwCf41BiaipRhq90dM4d1uv7-qnx-3m3vuw25weTlO5dl-N5F48DtAmjJzjM-zZxNiDPxZJopJIAQuB0tBXlA1zHCgA5gCB9VKAzfh7PALCQUbhn11BJWjbKtBIOcwk2IeAGkYCmtignw2QZp-y3rirHgel5TkXbvX6cmjeqoCGno26sXDC8tnV6-73SPd3ZPs_-hss51q6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Confocal Imaging: Mitotic chromosomes are self-entangled and disentangle through a Topoisomerase II-dependent two stage exit from mitosis</title><source>DataCite</source><creator>Hildebrand, Erica</creator><creatorcontrib>Hildebrand, Erica</creatorcontrib><description>The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact 3C, and propose that, in contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a Topoisomerase II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias Topoisomerase II activity towards decatenation. At the second stage, the loops are released, and formation of new entanglements is prevented by lower Topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed, in experiment and models, a normal interphase state cannot be acquired.
Original microscopy images supporting this dataset are included in this repository.</description><identifier>DOI: 10.17632/ccd42j5jxr</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Biochemistry ; Cell Biology ; Genomics ; Molecular Biology</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/ccd42j5jxr$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hildebrand, Erica</creatorcontrib><title>Confocal Imaging: Mitotic chromosomes are self-entangled and disentangle through a Topoisomerase II-dependent two stage exit from mitosis</title><description>The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact 3C, and propose that, in contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a Topoisomerase II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias Topoisomerase II activity towards decatenation. At the second stage, the loops are released, and formation of new entanglements is prevented by lower Topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed, in experiment and models, a normal interphase state cannot be acquired.
Original microscopy images supporting this dataset are included in this repository.</description><subject>Biochemistry</subject><subject>Cell Biology</subject><subject>Genomics</subject><subject>Molecular Biology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVj7FOw0AQRK-hQCEVP7B9ZIiTABKtBcJFuvTW6m592ch3a90uwnwCf41BiaipRhq90dM4d1uv7-qnx-3m3vuw25weTlO5dl-N5F48DtAmjJzjM-zZxNiDPxZJopJIAQuB0tBXlA1zHCgA5gCB9VKAzfh7PALCQUbhn11BJWjbKtBIOcwk2IeAGkYCmtignw2QZp-y3rirHgel5TkXbvX6cmjeqoCGno26sXDC8tnV6-73SPd3ZPs_-hss51q6</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Hildebrand, Erica</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20240308</creationdate><title>Confocal Imaging: Mitotic chromosomes are self-entangled and disentangle through a Topoisomerase II-dependent two stage exit from mitosis</title><author>Hildebrand, Erica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_ccd42j5jxr3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Cell Biology</topic><topic>Genomics</topic><topic>Molecular Biology</topic><toplevel>online_resources</toplevel><creatorcontrib>Hildebrand, Erica</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hildebrand, Erica</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Confocal Imaging: Mitotic chromosomes are self-entangled and disentangle through a Topoisomerase II-dependent two stage exit from mitosis</title><date>2024-03-08</date><risdate>2024</risdate><abstract>The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact 3C, and propose that, in contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a Topoisomerase II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias Topoisomerase II activity towards decatenation. At the second stage, the loops are released, and formation of new entanglements is prevented by lower Topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed, in experiment and models, a normal interphase state cannot be acquired.
Original microscopy images supporting this dataset are included in this repository.</abstract><pub>Mendeley Data</pub><doi>10.17632/ccd42j5jxr</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/ccd42j5jxr |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_ccd42j5jxr |
source | DataCite |
subjects | Biochemistry Cell Biology Genomics Molecular Biology |
title | Confocal Imaging: Mitotic chromosomes are self-entangled and disentangle through a Topoisomerase II-dependent two stage exit from mitosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Hildebrand,%20Erica&rft.date=2024-03-08&rft_id=info:doi/10.17632/ccd42j5jxr&rft_dat=%3Cdatacite_PQ8%3E10_17632_ccd42j5jxr%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |