A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation

Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lym, Jonathan
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lym, Jonathan
description Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams.
doi_str_mv 10.17632/b7f7d28ynd.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_b7f7d28ynd_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_b7f7d28ynd_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_b7f7d28ynd_13</originalsourceid><addsrcrecordid>eNqVzrEKwjAUheEsDqKO7nfUobVpwbqKKC4Fh-whbW9tsE1Kcgvm7S0idHY6y3fgZ2zLk5jnxyw9lHmT1-kpmDrmS_Y8wyNQaw0UY0faV6pDEC263lYt9tqTCyCs7Ur7ht1QjELsobEOaDbTB5Sp4aUNkq5gUE71SOgAPelekbZmzRaN6jxufrti0e0qLveoVqQqTSgHN1EXJE_kN1TOoZJn__oPU9NO6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><source>DataCite</source><creator>Lym, Jonathan</creator><creatorcontrib>Lym, Jonathan</creatorcontrib><description>Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams.</description><identifier>DOI: 10.17632/b7f7d28ynd.1</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Catalysis ; Computational Physics ; Statistical Mechanics ; Thermochemistry</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/b7f7d28ynd.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lym, Jonathan</creatorcontrib><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><description>Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams.</description><subject>Catalysis</subject><subject>Computational Physics</subject><subject>Statistical Mechanics</subject><subject>Thermochemistry</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2019</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzrEKwjAUheEsDqKO7nfUobVpwbqKKC4Fh-whbW9tsE1Kcgvm7S0idHY6y3fgZ2zLk5jnxyw9lHmT1-kpmDrmS_Y8wyNQaw0UY0faV6pDEC263lYt9tqTCyCs7Ur7ht1QjELsobEOaDbTB5Sp4aUNkq5gUE71SOgAPelekbZmzRaN6jxufrti0e0qLveoVqQqTSgHN1EXJE_kN1TOoZJn__oPU9NO6Q</recordid><startdate>20190904</startdate><enddate>20190904</enddate><creator>Lym, Jonathan</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20190904</creationdate><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><author>Lym, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_b7f7d28ynd_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Computational Physics</topic><topic>Statistical Mechanics</topic><topic>Thermochemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Lym, Jonathan</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lym, Jonathan</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><date>2019-09-04</date><risdate>2019</risdate><abstract>Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams.</abstract><pub>Mendeley</pub><doi>10.17632/b7f7d28ynd.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/b7f7d28ynd.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_b7f7d28ynd_1
source DataCite
subjects Catalysis
Computational Physics
Statistical Mechanics
Thermochemistry
title A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Lym,%20Jonathan&rft.date=2019-09-04&rft_id=info:doi/10.17632/b7f7d28ynd.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_b7f7d28ynd_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true