A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation
Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using stati...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Lym, Jonathan |
description | Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams. |
doi_str_mv | 10.17632/b7f7d28ynd.1 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_b7f7d28ynd_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_b7f7d28ynd_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_b7f7d28ynd_13</originalsourceid><addsrcrecordid>eNqVzrEKwjAUheEsDqKO7nfUobVpwbqKKC4Fh-whbW9tsE1Kcgvm7S0idHY6y3fgZ2zLk5jnxyw9lHmT1-kpmDrmS_Y8wyNQaw0UY0faV6pDEC263lYt9tqTCyCs7Ur7ht1QjELsobEOaDbTB5Sp4aUNkq5gUE71SOgAPelekbZmzRaN6jxufrti0e0qLveoVqQqTSgHN1EXJE_kN1TOoZJn__oPU9NO6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><source>DataCite</source><creator>Lym, Jonathan</creator><creatorcontrib>Lym, Jonathan</creatorcontrib><description>Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams.</description><identifier>DOI: 10.17632/b7f7d28ynd.1</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Catalysis ; Computational Physics ; Statistical Mechanics ; Thermochemistry</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/b7f7d28ynd.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lym, Jonathan</creatorcontrib><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><description>Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams.</description><subject>Catalysis</subject><subject>Computational Physics</subject><subject>Statistical Mechanics</subject><subject>Thermochemistry</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2019</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzrEKwjAUheEsDqKO7nfUobVpwbqKKC4Fh-whbW9tsE1Kcgvm7S0idHY6y3fgZ2zLk5jnxyw9lHmT1-kpmDrmS_Y8wyNQaw0UY0faV6pDEC263lYt9tqTCyCs7Ur7ht1QjELsobEOaDbTB5Sp4aUNkq5gUE71SOgAPelekbZmzRaN6jxufrti0e0qLveoVqQqTSgHN1EXJE_kN1TOoZJn__oPU9NO6Q</recordid><startdate>20190904</startdate><enddate>20190904</enddate><creator>Lym, Jonathan</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20190904</creationdate><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><author>Lym, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_b7f7d28ynd_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Computational Physics</topic><topic>Statistical Mechanics</topic><topic>Thermochemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Lym, Jonathan</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lym, Jonathan</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation</title><date>2019-09-04</date><risdate>2019</risdate><abstract>Estimating the thermochemical properties of systems is important in many fields such as material science and catalysis. The Python multiscale thermochemistry toolbox (pMuTT) is a Python software library developed to streamline the conversion of ab-initio data to thermochemical properties using statistical mechanics, to perform thermodynamic analysis, and to create input files for kinetic modeling software. Its open-source implementation in Python leverages existing scientific codes, encourages users to write scripts for their needs, and allows the code to be expanded easily. The core classes developed include a statistical mechanical model in which energy modes can be included or excluded to suit the application, empirical models for rapid thermodynamic property estimation, and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships, coverage effects, and ab-initio phase diagrams.</abstract><pub>Mendeley</pub><doi>10.17632/b7f7d28ynd.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/b7f7d28ynd.1 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_b7f7d28ynd_1 |
source | DataCite |
subjects | Catalysis Computational Physics Statistical Mechanics Thermochemistry |
title | A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Lym,%20Jonathan&rft.date=2019-09-04&rft_id=info:doi/10.17632/b7f7d28ynd.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_b7f7d28ynd_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |