Dataset on the enthalpy of mixing in binary liquids

This dataset contains: (1) "Dataset" folder - Data on the enthalpy of mixing collected in 375 binary liquids from Calphad modeling in composition domains where the models are supported by experimental measurements. Metadata ("Metadata.csv") and explanation of the data quality ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deffrennes, Guillaume, Hallstedt, Bengt, Abe, Taichi, Bizot, Quentin, Fischer, Evelyne, Joubert, Jean-Marc, Terayama, Group, Tamura, Ryo
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Deffrennes, Guillaume
Hallstedt, Bengt
Abe, Taichi
Bizot, Quentin
Fischer, Evelyne
Joubert, Jean-Marc
Terayama, Group
Tamura, Ryo
description This dataset contains: (1) "Dataset" folder - Data on the enthalpy of mixing collected in 375 binary liquids from Calphad modeling in composition domains where the models are supported by experimental measurements. Metadata ("Metadata.csv") and explanation of the data quality ranking ("Readme_Metadata.txt") are given in the root folder. (2) "Predictions" folder - Machine learning predictions of this property given as Redlich-Kister polynomials in the 2415 binary systems generated by 70 elements. The predictions are also compared with those of the Miedema model in tables and figures where data are also plotted when available. For more information and to use this dataset, please refer to this manuscript under review for publication: G. Deffrennes, B. Hallstedt, T. Abe, Q. Bizot, E. Fischer, J-M. Joubert, K. Terayama, and R. Tamura, Data-driven study of the enthalpy of mixing in the liquid phase, arXiv:2406.11004v1 [cond-mat.mtrl-sci].
doi_str_mv 10.17632/6wt6t9kswt.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_6wt6t9kswt_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_6wt6t9kswt_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_6wt6t9kswt_13</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNDczNtI3Ky8xK7HMLi4v0TPkZDB2SSxJLE4tUcjPUyjJSFVIzSvJSMwpqFTIT1PIzazIzEtXyMxTSMrMSyyqVMjJLCzNTCnmYWBNS8wpTuWF0twMum6uIc4euilAs5IzS1LjC4oyc4Ea4g0N4sGWxiMsjTc0JlU9APZNPH0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Dataset on the enthalpy of mixing in binary liquids</title><source>DataCite</source><creator>Deffrennes, Guillaume ; Hallstedt, Bengt ; Abe, Taichi ; Bizot, Quentin ; Fischer, Evelyne ; Joubert, Jean-Marc ; Terayama, Group ; Tamura, Ryo</creator><creatorcontrib>Deffrennes, Guillaume ; Hallstedt, Bengt ; Abe, Taichi ; Bizot, Quentin ; Fischer, Evelyne ; Joubert, Jean-Marc ; Terayama, Group ; Tamura, Ryo</creatorcontrib><description>This dataset contains: (1) "Dataset" folder - Data on the enthalpy of mixing collected in 375 binary liquids from Calphad modeling in composition domains where the models are supported by experimental measurements. Metadata ("Metadata.csv") and explanation of the data quality ranking ("Readme_Metadata.txt") are given in the root folder. (2) "Predictions" folder - Machine learning predictions of this property given as Redlich-Kister polynomials in the 2415 binary systems generated by 70 elements. The predictions are also compared with those of the Miedema model in tables and figures where data are also plotted when available. For more information and to use this dataset, please refer to this manuscript under review for publication: G. Deffrennes, B. Hallstedt, T. Abe, Q. Bizot, E. Fischer, J-M. Joubert, K. Terayama, and R. Tamura, Data-driven study of the enthalpy of mixing in the liquid phase, arXiv:2406.11004v1 [cond-mat.mtrl-sci].</description><identifier>DOI: 10.17632/6wt6t9kswt.1</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Enthalpy ; Liquid ; Liquid Alloy ; Machine Learning ; Mixing ; Phase Diagram</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4314-2266 ; 0000-0002-0349-358X ; 0000-0001-7266-1850 ; 0000-0001-5959-7030 ; 0000-0003-3914-248X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/6wt6t9kswt.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Deffrennes, Guillaume</creatorcontrib><creatorcontrib>Hallstedt, Bengt</creatorcontrib><creatorcontrib>Abe, Taichi</creatorcontrib><creatorcontrib>Bizot, Quentin</creatorcontrib><creatorcontrib>Fischer, Evelyne</creatorcontrib><creatorcontrib>Joubert, Jean-Marc</creatorcontrib><creatorcontrib>Terayama, Group</creatorcontrib><creatorcontrib>Tamura, Ryo</creatorcontrib><title>Dataset on the enthalpy of mixing in binary liquids</title><description>This dataset contains: (1) "Dataset" folder - Data on the enthalpy of mixing collected in 375 binary liquids from Calphad modeling in composition domains where the models are supported by experimental measurements. Metadata ("Metadata.csv") and explanation of the data quality ranking ("Readme_Metadata.txt") are given in the root folder. (2) "Predictions" folder - Machine learning predictions of this property given as Redlich-Kister polynomials in the 2415 binary systems generated by 70 elements. The predictions are also compared with those of the Miedema model in tables and figures where data are also plotted when available. For more information and to use this dataset, please refer to this manuscript under review for publication: G. Deffrennes, B. Hallstedt, T. Abe, Q. Bizot, E. Fischer, J-M. Joubert, K. Terayama, and R. Tamura, Data-driven study of the enthalpy of mixing in the liquid phase, arXiv:2406.11004v1 [cond-mat.mtrl-sci].</description><subject>Enthalpy</subject><subject>Liquid</subject><subject>Liquid Alloy</subject><subject>Machine Learning</subject><subject>Mixing</subject><subject>Phase Diagram</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNDczNtI3Ky8xK7HMLi4v0TPkZDB2SSxJLE4tUcjPUyjJSFVIzSvJSMwpqFTIT1PIzazIzEtXyMxTSMrMSyyqVMjJLCzNTCnmYWBNS8wpTuWF0twMum6uIc4euilAs5IzS1LjC4oyc4Ea4g0N4sGWxiMsjTc0JlU9APZNPH0</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Deffrennes, Guillaume</creator><creator>Hallstedt, Bengt</creator><creator>Abe, Taichi</creator><creator>Bizot, Quentin</creator><creator>Fischer, Evelyne</creator><creator>Joubert, Jean-Marc</creator><creator>Terayama, Group</creator><creator>Tamura, Ryo</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-4314-2266</orcidid><orcidid>https://orcid.org/0000-0002-0349-358X</orcidid><orcidid>https://orcid.org/0000-0001-7266-1850</orcidid><orcidid>https://orcid.org/0000-0001-5959-7030</orcidid><orcidid>https://orcid.org/0000-0003-3914-248X</orcidid></search><sort><creationdate>20240910</creationdate><title>Dataset on the enthalpy of mixing in binary liquids</title><author>Deffrennes, Guillaume ; Hallstedt, Bengt ; Abe, Taichi ; Bizot, Quentin ; Fischer, Evelyne ; Joubert, Jean-Marc ; Terayama, Group ; Tamura, Ryo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_6wt6t9kswt_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Enthalpy</topic><topic>Liquid</topic><topic>Liquid Alloy</topic><topic>Machine Learning</topic><topic>Mixing</topic><topic>Phase Diagram</topic><toplevel>online_resources</toplevel><creatorcontrib>Deffrennes, Guillaume</creatorcontrib><creatorcontrib>Hallstedt, Bengt</creatorcontrib><creatorcontrib>Abe, Taichi</creatorcontrib><creatorcontrib>Bizot, Quentin</creatorcontrib><creatorcontrib>Fischer, Evelyne</creatorcontrib><creatorcontrib>Joubert, Jean-Marc</creatorcontrib><creatorcontrib>Terayama, Group</creatorcontrib><creatorcontrib>Tamura, Ryo</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deffrennes, Guillaume</au><au>Hallstedt, Bengt</au><au>Abe, Taichi</au><au>Bizot, Quentin</au><au>Fischer, Evelyne</au><au>Joubert, Jean-Marc</au><au>Terayama, Group</au><au>Tamura, Ryo</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Dataset on the enthalpy of mixing in binary liquids</title><date>2024-09-10</date><risdate>2024</risdate><abstract>This dataset contains: (1) "Dataset" folder - Data on the enthalpy of mixing collected in 375 binary liquids from Calphad modeling in composition domains where the models are supported by experimental measurements. Metadata ("Metadata.csv") and explanation of the data quality ranking ("Readme_Metadata.txt") are given in the root folder. (2) "Predictions" folder - Machine learning predictions of this property given as Redlich-Kister polynomials in the 2415 binary systems generated by 70 elements. The predictions are also compared with those of the Miedema model in tables and figures where data are also plotted when available. For more information and to use this dataset, please refer to this manuscript under review for publication: G. Deffrennes, B. Hallstedt, T. Abe, Q. Bizot, E. Fischer, J-M. Joubert, K. Terayama, and R. Tamura, Data-driven study of the enthalpy of mixing in the liquid phase, arXiv:2406.11004v1 [cond-mat.mtrl-sci].</abstract><pub>Mendeley Data</pub><doi>10.17632/6wt6t9kswt.1</doi><orcidid>https://orcid.org/0000-0002-4314-2266</orcidid><orcidid>https://orcid.org/0000-0002-0349-358X</orcidid><orcidid>https://orcid.org/0000-0001-7266-1850</orcidid><orcidid>https://orcid.org/0000-0001-5959-7030</orcidid><orcidid>https://orcid.org/0000-0003-3914-248X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/6wt6t9kswt.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_6wt6t9kswt_1
source DataCite
subjects Enthalpy
Liquid
Liquid Alloy
Machine Learning
Mixing
Phase Diagram
title Dataset on the enthalpy of mixing in binary liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Deffrennes,%20Guillaume&rft.date=2024-09-10&rft_id=info:doi/10.17632/6wt6t9kswt.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_6wt6t9kswt_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true