Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia

Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chinopoulos, Christos
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chinopoulos, Christos
description Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.
doi_str_mv 10.17632/5tj4kymggt
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_5tj4kymggt</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_5tj4kymggt</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_5tj4kymggt3</originalsourceid><addsrcrecordid>eNqVjr0KwkAQhK-xELXyBbYXNTH-PEBQDFiI2oc1OZPVu9xx2Uji0xtF0NZq4GNm-IQY-t7EXy2D2XTB1_mt0VnGXfE4yJLSChWERlsla4gAE6Y7cQNYpIDa5pSSky00xW8vAmOlwxeGsrLWOIZMVYwaWUKCjGejqNTAuTNVloPm424PVLS_pibsi84FVSkHn-yJ0WZ9CrfjtJ0mxDK2jjS6Jva9-G0ef82D_9pPHEVWPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia</title><source>DataCite</source><creator>Chinopoulos, Christos</creator><creatorcontrib>Chinopoulos, Christos</creatorcontrib><description>Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.</description><identifier>DOI: 10.17632/5tj4kymggt</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Biochemistry</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0183-4149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,1896</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/5tj4kymggt$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chinopoulos, Christos</creatorcontrib><title>Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia</title><description>Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.</description><subject>Biochemistry</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjr0KwkAQhK-xELXyBbYXNTH-PEBQDFiI2oc1OZPVu9xx2Uji0xtF0NZq4GNm-IQY-t7EXy2D2XTB1_mt0VnGXfE4yJLSChWERlsla4gAE6Y7cQNYpIDa5pSSky00xW8vAmOlwxeGsrLWOIZMVYwaWUKCjGejqNTAuTNVloPm424PVLS_pibsi84FVSkHn-yJ0WZ9CrfjtJ0mxDK2jjS6Jva9-G0ef82D_9pPHEVWPw</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Chinopoulos, Christos</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-0183-4149</orcidid></search><sort><creationdate>20240122</creationdate><title>Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia</title><author>Chinopoulos, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_5tj4kymggt3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Chinopoulos, Christos</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chinopoulos, Christos</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia</title><date>2024-01-22</date><risdate>2024</risdate><abstract>Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.</abstract><pub>Mendeley Data</pub><doi>10.17632/5tj4kymggt</doi><orcidid>https://orcid.org/0000-0003-0183-4149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/5tj4kymggt
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_5tj4kymggt
source DataCite
subjects Biochemistry
title Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Chinopoulos,%20Christos&rft.date=2024-01-22&rft_id=info:doi/10.17632/5tj4kymggt&rft_dat=%3Cdatacite_PQ8%3E10_17632_5tj4kymggt%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true