Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models

This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nitin Williams
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Nitin Williams
description This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75). We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.
doi_str_mv 10.17632/5kgw7ssbpx.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_5kgw7ssbpx_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_5kgw7ssbpx_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_5kgw7ssbpx_13</originalsourceid><addsrcrecordid>eNqVjrEKwjAURbM4iDq6vx9obRTtrihOTu7hNX2toWlT8hK1f28R0dnpwuUcOEIsZZbKfLdZr7ZN_ciZi_6Zyqlo9sZZVxuNFrTrOHg0XWConIcePbYUyMMdbSQGV4FFX1PCI05QfFU7QG8xsinG-xZb7OBC0TvWhjpN0LqSLM_FpELLtPjsTCSn4_VwTkoMqE0g1XvToh-UzNQ7Vv1ildz8y78A9ndS8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><source>DataCite</source><creator>Nitin Williams</creator><creatorcontrib>Nitin Williams</creatorcontrib><description>This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75). We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.</description><identifier>DOI: 10.17632/5kgw7ssbpx.1</identifier><language>eng</language><publisher>Mendeley</publisher><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/5kgw7ssbpx.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nitin Williams</creatorcontrib><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><description>This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75). We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrEKwjAURbM4iDq6vx9obRTtrihOTu7hNX2toWlT8hK1f28R0dnpwuUcOEIsZZbKfLdZr7ZN_ciZi_6Zyqlo9sZZVxuNFrTrOHg0XWConIcePbYUyMMdbSQGV4FFX1PCI05QfFU7QG8xsinG-xZb7OBC0TvWhjpN0LqSLM_FpELLtPjsTCSn4_VwTkoMqE0g1XvToh-UzNQ7Vv1ildz8y78A9ndS8Q</recordid><startdate>20230206</startdate><enddate>20230206</enddate><creator>Nitin Williams</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20230206</creationdate><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><author>Nitin Williams</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_5kgw7ssbpx_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nitin Williams</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nitin Williams</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><date>2023-02-06</date><risdate>2023</risdate><abstract>This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75). We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.</abstract><pub>Mendeley</pub><doi>10.17632/5kgw7ssbpx.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/5kgw7ssbpx.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_5kgw7ssbpx_1
source DataCite
title Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Nitin%20Williams&rft.date=2023-02-06&rft_id=info:doi/10.17632/5kgw7ssbpx.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_5kgw7ssbpx_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true