Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models

This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Williams, Nitin
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Williams, Nitin
description This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75) in Williams et al. (2023), NeuroImage paper 4.) Data used to perform Prior Predictive Checks in Williams et al. (2023), NeuroImage paper, 5.) Data used to perform Posterior Predictive Checks in Williams et al. (2023), NeuroImage paper. We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.
doi_str_mv 10.17632/5kgw7ssbpx
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_5kgw7ssbpx</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_5kgw7ssbpx</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_5kgw7ssbpx3</originalsourceid><addsrcrecordid>eNqVjrEKwjAURbM4iDr5A2-XamvR7ori5OQeXuNrDU2bkJeo_XuLiM5OFy7nwBFinqXLrNjm69WmqR8Fc-meY9HstDW21goNKNtx8Ki7wFBZDw49thTIwx1NJAZbgUFfU8IDTlB-VdODMxhZl8N9iy12cKboLStNnSJo7ZUMT8WoQsM0--xELI6Hy_6UXDGg0oGk87pF38ssle9U-UvN_6NfUDNRbA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><source>DataCite</source><creator>Williams, Nitin</creator><creatorcontrib>Williams, Nitin</creatorcontrib><description>This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75) in Williams et al. (2023), NeuroImage paper 4.) Data used to perform Prior Predictive Checks in Williams et al. (2023), NeuroImage paper, 5.) Data used to perform Posterior Predictive Checks in Williams et al. (2023), NeuroImage paper. We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.</description><identifier>DOI: 10.17632/5kgw7ssbpx</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Cognitive Neuroscience ; Computational Neuroscience ; Neuroscience ; Systems Neuroscience</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/5kgw7ssbpx$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Williams, Nitin</creatorcontrib><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><description>This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75) in Williams et al. (2023), NeuroImage paper 4.) Data used to perform Prior Predictive Checks in Williams et al. (2023), NeuroImage paper, 5.) Data used to perform Posterior Predictive Checks in Williams et al. (2023), NeuroImage paper. We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.</description><subject>Cognitive Neuroscience</subject><subject>Computational Neuroscience</subject><subject>Neuroscience</subject><subject>Systems Neuroscience</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrEKwjAURbM4iDr5A2-XamvR7ori5OQeXuNrDU2bkJeo_XuLiM5OFy7nwBFinqXLrNjm69WmqR8Fc-meY9HstDW21goNKNtx8Ki7wFBZDw49thTIwx1NJAZbgUFfU8IDTlB-VdODMxhZl8N9iy12cKboLStNnSJo7ZUMT8WoQsM0--xELI6Hy_6UXDGg0oGk87pF38ssle9U-UvN_6NfUDNRbA</recordid><startdate>20231025</startdate><enddate>20231025</enddate><creator>Williams, Nitin</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20231025</creationdate><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><author>Williams, Nitin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_5kgw7ssbpx3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cognitive Neuroscience</topic><topic>Computational Neuroscience</topic><topic>Neuroscience</topic><topic>Systems Neuroscience</topic><toplevel>online_resources</toplevel><creatorcontrib>Williams, Nitin</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Williams, Nitin</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models</title><date>2023-10-25</date><risdate>2023</risdate><abstract>This dataset contains 1.) time constants of excitatory and inhibitory neocortical neurons, collated from the NeuroElectro database, 2.) spike thresholds of excitatory and inhibitory neurons, collated from the NeuroElectro database, and 3.) posterior distributions of parameters of large-scale biologically plausible models of human Neuroscience data, estimated using likelihood-free inference (LFI) methods to fit these models to Magnetoencephalography (MEG) resting-state data (N=75) in Williams et al. (2023), NeuroImage paper 4.) Data used to perform Prior Predictive Checks in Williams et al. (2023), NeuroImage paper, 5.) Data used to perform Posterior Predictive Checks in Williams et al. (2023), NeuroImage paper. We used pooled versions of the time constants and spike threshold values in this dataset along with other biological constraints, to set prior distributions of parameters of large-scale biologically plausible models of human Neuroscience data. We then used LFI methods to estimate posterior distributions of these parameters from MEG resting-state data (N=75) - we have also shared the posterior distributions in this dataset. Examples of parameters for which we have shared posterior distributions include strengths of connections within and between excitatory and inhibitory neuronal populations, time constants of excitatory and inhibitory neuronal populations, and firing thresholds of excitatory and inhibitory neuronal populations. These posterior distributions could be used by other research groups to set prior distributions of parameters of their biologically plausible models, in both experimental and modeling studies.</abstract><pub>Mendeley Data</pub><doi>10.17632/5kgw7ssbpx</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/5kgw7ssbpx
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_5kgw7ssbpx
source DataCite
subjects Cognitive Neuroscience
Computational Neuroscience
Neuroscience
Systems Neuroscience
title Biological constraints for parameter values of large-scale biologically plausible human Neuroscience models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Williams,%20Nitin&rft.date=2023-10-25&rft_id=info:doi/10.17632/5kgw7ssbpx&rft_dat=%3Cdatacite_PQ8%3E10_17632_5kgw7ssbpx%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true