Multi_layer graph plant leaf segmentation

We showcase the results of our graph-based diffusion technique utilizing random walks with restarts on a multi-layered graph using the publicly accessible Pl@ntleaves (H. Go¨eau, P. Bonnet, A. Joly, N. Boujemaa, D. Barth´el´emy, J.-F. Molino, P. Birnbaum, E. Mouysset, M. Picard, The clef 2011 plant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: ADADA, Lyasmine
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ADADA, Lyasmine
description We showcase the results of our graph-based diffusion technique utilizing random walks with restarts on a multi-layered graph using the publicly accessible Pl@ntleaves (H. Go¨eau, P. Bonnet, A. Joly, N. Boujemaa, D. Barth´el´emy, J.-F. Molino, P. Birnbaum, E. Mouysset, M. Picard, The clef 2011 plant images classification task, Vol. 1177, 2011.) dataset. This dataset comprises 233 high-resolution leaf images taken in their natural environments, presenting various segmentation challenges such as shadows, diverse lighting conditions, and leaf overlap. Our method primarily focuses on identifying leaf regions by initially locating the leaves within the images and then propagating intensity scores from foreground templates to image boundaries to generate saliency maps. By applying a threshold to these saliency maps produced through the diffusion process, we derive binary masks that effectively separate the leaves from the backgrounds. Ground truth images are provided for visual evaluation of our algorithm's performance.Folders description: image: RGB images mask: Ground truth masks FG_templates: foreground templates and bounding boxes defined on dataset images Salinecy_map: saliency maps obtained by our approach PR_masks: Predicted masks obtained by tresholding our salinecy maps Plant_Leaf_Segmentation: a compressed folder containing the above folders.
doi_str_mv 10.17632/46n94cngkx.1
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_46n94cngkx_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_46n94cngkx_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_46n94cngkx_13</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNDczNtI3McuzNEnOS8-u0DPkZND0Lc0pyYzPSaxMLVJIL0osyFAoyEnMK1HISU1MUyhOTc9NzStJLMnMz-NhYE1LzClO5YXS3Ay6bq4hzh66KYklicmZJanxBUWZuYlFlfGGBvFgq-IRVsUbGpOqHgBSgDgJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Multi_layer graph plant leaf segmentation</title><source>DataCite</source><creator>ADADA, Lyasmine</creator><creatorcontrib>ADADA, Lyasmine</creatorcontrib><description>We showcase the results of our graph-based diffusion technique utilizing random walks with restarts on a multi-layered graph using the publicly accessible Pl@ntleaves (H. Go¨eau, P. Bonnet, A. Joly, N. Boujemaa, D. Barth´el´emy, J.-F. Molino, P. Birnbaum, E. Mouysset, M. Picard, The clef 2011 plant images classification task, Vol. 1177, 2011.) dataset. This dataset comprises 233 high-resolution leaf images taken in their natural environments, presenting various segmentation challenges such as shadows, diverse lighting conditions, and leaf overlap. Our method primarily focuses on identifying leaf regions by initially locating the leaves within the images and then propagating intensity scores from foreground templates to image boundaries to generate saliency maps. By applying a threshold to these saliency maps produced through the diffusion process, we derive binary masks that effectively separate the leaves from the backgrounds. Ground truth images are provided for visual evaluation of our algorithm's performance.Folders description: image: RGB images mask: Ground truth masks FG_templates: foreground templates and bounding boxes defined on dataset images Salinecy_map: saliency maps obtained by our approach PR_masks: Predicted masks obtained by tresholding our salinecy maps Plant_Leaf_Segmentation: a compressed folder containing the above folders.</description><identifier>DOI: 10.17632/46n94cngkx.1</identifier><language>eng</language><publisher>Mendeley Data</publisher><subject>Computer Vision Algorithms ; Image Processing ; Image Segmentation ; Precision Agriculture</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/46n94cngkx.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ADADA, Lyasmine</creatorcontrib><title>Multi_layer graph plant leaf segmentation</title><description>We showcase the results of our graph-based diffusion technique utilizing random walks with restarts on a multi-layered graph using the publicly accessible Pl@ntleaves (H. Go¨eau, P. Bonnet, A. Joly, N. Boujemaa, D. Barth´el´emy, J.-F. Molino, P. Birnbaum, E. Mouysset, M. Picard, The clef 2011 plant images classification task, Vol. 1177, 2011.) dataset. This dataset comprises 233 high-resolution leaf images taken in their natural environments, presenting various segmentation challenges such as shadows, diverse lighting conditions, and leaf overlap. Our method primarily focuses on identifying leaf regions by initially locating the leaves within the images and then propagating intensity scores from foreground templates to image boundaries to generate saliency maps. By applying a threshold to these saliency maps produced through the diffusion process, we derive binary masks that effectively separate the leaves from the backgrounds. Ground truth images are provided for visual evaluation of our algorithm's performance.Folders description: image: RGB images mask: Ground truth masks FG_templates: foreground templates and bounding boxes defined on dataset images Salinecy_map: saliency maps obtained by our approach PR_masks: Predicted masks obtained by tresholding our salinecy maps Plant_Leaf_Segmentation: a compressed folder containing the above folders.</description><subject>Computer Vision Algorithms</subject><subject>Image Processing</subject><subject>Image Segmentation</subject><subject>Precision Agriculture</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNDczNtI3McuzNEnOS8-u0DPkZND0Lc0pyYzPSaxMLVJIL0osyFAoyEnMK1HISU1MUyhOTc9NzStJLMnMz-NhYE1LzClO5YXS3Ay6bq4hzh66KYklicmZJanxBUWZuYlFlfGGBvFgq-IRVsUbGpOqHgBSgDgJ</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>ADADA, Lyasmine</creator><general>Mendeley Data</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20240315</creationdate><title>Multi_layer graph plant leaf segmentation</title><author>ADADA, Lyasmine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_46n94cngkx_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Vision Algorithms</topic><topic>Image Processing</topic><topic>Image Segmentation</topic><topic>Precision Agriculture</topic><toplevel>online_resources</toplevel><creatorcontrib>ADADA, Lyasmine</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ADADA, Lyasmine</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Multi_layer graph plant leaf segmentation</title><date>2024-03-15</date><risdate>2024</risdate><abstract>We showcase the results of our graph-based diffusion technique utilizing random walks with restarts on a multi-layered graph using the publicly accessible Pl@ntleaves (H. Go¨eau, P. Bonnet, A. Joly, N. Boujemaa, D. Barth´el´emy, J.-F. Molino, P. Birnbaum, E. Mouysset, M. Picard, The clef 2011 plant images classification task, Vol. 1177, 2011.) dataset. This dataset comprises 233 high-resolution leaf images taken in their natural environments, presenting various segmentation challenges such as shadows, diverse lighting conditions, and leaf overlap. Our method primarily focuses on identifying leaf regions by initially locating the leaves within the images and then propagating intensity scores from foreground templates to image boundaries to generate saliency maps. By applying a threshold to these saliency maps produced through the diffusion process, we derive binary masks that effectively separate the leaves from the backgrounds. Ground truth images are provided for visual evaluation of our algorithm's performance.Folders description: image: RGB images mask: Ground truth masks FG_templates: foreground templates and bounding boxes defined on dataset images Salinecy_map: saliency maps obtained by our approach PR_masks: Predicted masks obtained by tresholding our salinecy maps Plant_Leaf_Segmentation: a compressed folder containing the above folders.</abstract><pub>Mendeley Data</pub><doi>10.17632/46n94cngkx.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.17632/46n94cngkx.1
ispartof
issn
language eng
recordid cdi_datacite_primary_10_17632_46n94cngkx_1
source DataCite
subjects Computer Vision Algorithms
Image Processing
Image Segmentation
Precision Agriculture
title Multi_layer graph plant leaf segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=ADADA,%20Lyasmine&rft.date=2024-03-15&rft_id=info:doi/10.17632/46n94cngkx.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_46n94cngkx_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true