Data for: hERG Liability Classification Models Using Machine Learning Techniques
This file pertains 1) all SMILES(except the evaluation set-3 which contains the compound data from in-house proprietary projects) with respective pIC50 values that were used in training and evaluating the models 2) list of descriptors that were used to build models
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kristam, Rajendra |
description | This file pertains 1) all SMILES(except the evaluation set-3 which contains the compound data from in-house proprietary projects) with respective pIC50 values that were used in training and evaluating the models 2) list of descriptors that were used to build models |
doi_str_mv | 10.17632/32pdx7y72x.1 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17632_32pdx7y72x_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17632_32pdx7y72x_1</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17632_32pdx7y72x_13</originalsourceid><addsrcrecordid>eNqVjr0KwjAURrM4iDq63xdobVqw4FqrDi2I1Dlc09ReiGlNIrRv7w-Cs9OBjwPfYWzJo5Cn6yReJXFfD-mYxkPIp-y4RY_QdHYDbX7aQ0F4IU1-hEyjc9SQRE-dgbKrlXZwdmSuUKJsySgoFFrzHiolW0P3h3JzNmlQO7X4csaCXV5lh6B-HUnySvSWbmhHwSPxKRK_IsGTf_0nMB1FEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data for: hERG Liability Classification Models Using Machine Learning Techniques</title><source>DataCite</source><creator>Kristam, Rajendra</creator><creatorcontrib>Kristam, Rajendra</creatorcontrib><description>This file pertains 1) all SMILES(except the evaluation set-3 which contains the compound data from in-house proprietary projects) with respective pIC50 values that were used in training and evaluating the models 2) list of descriptors that were used to build models</description><identifier>DOI: 10.17632/32pdx7y72x.1</identifier><language>eng</language><publisher>Mendeley</publisher><subject>Cardiotoxicity ; Chemoinformatics ; Computational Chemistry ; Long QT Syndrome ; Modelling ; Quantitative Structure-Activity Relationship ; Toxicity</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17632/32pdx7y72x.1$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kristam, Rajendra</creatorcontrib><title>Data for: hERG Liability Classification Models Using Machine Learning Techniques</title><description>This file pertains 1) all SMILES(except the evaluation set-3 which contains the compound data from in-house proprietary projects) with respective pIC50 values that were used in training and evaluating the models 2) list of descriptors that were used to build models</description><subject>Cardiotoxicity</subject><subject>Chemoinformatics</subject><subject>Computational Chemistry</subject><subject>Long QT Syndrome</subject><subject>Modelling</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Toxicity</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2019</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjr0KwjAURrM4iDq63xdobVqw4FqrDi2I1Dlc09ReiGlNIrRv7w-Cs9OBjwPfYWzJo5Cn6yReJXFfD-mYxkPIp-y4RY_QdHYDbX7aQ0F4IU1-hEyjc9SQRE-dgbKrlXZwdmSuUKJsySgoFFrzHiolW0P3h3JzNmlQO7X4csaCXV5lh6B-HUnySvSWbmhHwSPxKRK_IsGTf_0nMB1FEA</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Kristam, Rajendra</creator><general>Mendeley</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20190513</creationdate><title>Data for: hERG Liability Classification Models Using Machine Learning Techniques</title><author>Kristam, Rajendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17632_32pdx7y72x_13</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cardiotoxicity</topic><topic>Chemoinformatics</topic><topic>Computational Chemistry</topic><topic>Long QT Syndrome</topic><topic>Modelling</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Toxicity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kristam, Rajendra</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kristam, Rajendra</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data for: hERG Liability Classification Models Using Machine Learning Techniques</title><date>2019-05-13</date><risdate>2019</risdate><abstract>This file pertains 1) all SMILES(except the evaluation set-3 which contains the compound data from in-house proprietary projects) with respective pIC50 values that were used in training and evaluating the models 2) list of descriptors that were used to build models</abstract><pub>Mendeley</pub><doi>10.17632/32pdx7y72x.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17632/32pdx7y72x.1 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17632_32pdx7y72x_1 |
source | DataCite |
subjects | Cardiotoxicity Chemoinformatics Computational Chemistry Long QT Syndrome Modelling Quantitative Structure-Activity Relationship Toxicity |
title | Data for: hERG Liability Classification Models Using Machine Learning Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Kristam,%20Rajendra&rft.date=2019-05-13&rft_id=info:doi/10.17632/32pdx7y72x.1&rft_dat=%3Cdatacite_PQ8%3E10_17632_32pdx7y72x_1%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |