An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic
An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic seeks to harness the power of data mining techniques with the interpretive analytics of the humanities and social sciences to understand how newspapers shaped public opinion and represented authoritative knowledge during this de...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ewing, E. Thomas Gad, Samah Hausman, Bernice Louise Kerr, Kathleen Pencek, Bruce Ramakrishnan, Naren |
description | An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic seeks to harness the power of data mining techniques with the interpretive analytics of the humanities and social sciences to understand how newspapers shaped public opinion and represented authoritative knowledge during this deadly pandemic. This project makes use of the more than 100 newspaper titles for 1918 available from Chronicling America at the United States Library of Congress and the Peel's Prairie Provinces collection at the University of Alberta Library. The application of algorithmic techniques enables the domain expert to systematically explore a broad repository of data and identify qualitative features of the pandemic in the small scale as well as the genealogy of information flow in the large scale. This research can provide methods for understanding the spread of information and the flow of disease in other societies facing the threat of pandemics. |
doi_str_mv | 10.17613/6nctp-hb049 |
format | Report |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_17613_6nctp_hb049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17613_6nctp_hb049</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_17613_6nctp_hb0493</originalsourceid><addsrcrecordid>eNpjYBAxNNAzNDczNNY3y0suKdDNSDIwseRkcHfMU3AtyExJzc3Mz8lPr1TIT1PwzEvLL8pNLMnMz7NScEksSVTwzczLzEtXKMlIVTC0NLQAqcgpTc2rSlQISMwD6U3mYWBNS8wpTuWF0twMOm6uIc4euilA_cmZJanxBUWZuYlFlfGGBvFgd8SD3REPdocxicoBrI9AjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic</title><source>DataCite</source><creator>Ewing, E. Thomas ; Gad, Samah ; Hausman, Bernice Louise ; Kerr, Kathleen ; Pencek, Bruce ; Ramakrishnan, Naren</creator><creatorcontrib>Ewing, E. Thomas ; Gad, Samah ; Hausman, Bernice Louise ; Kerr, Kathleen ; Pencek, Bruce ; Ramakrishnan, Naren</creatorcontrib><description>An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic seeks to harness the power of data mining techniques with the interpretive analytics of the humanities and social sciences to understand how newspapers shaped public opinion and represented authoritative knowledge during this deadly pandemic. This project makes use of the more than 100 newspaper titles for 1918 available from Chronicling America at the United States Library of Congress and the Peel's Prairie Provinces collection at the University of Alberta Library. The application of algorithmic techniques enables the domain expert to systematically explore a broad repository of data and identify qualitative features of the pandemic in the small scale as well as the genealogy of information flow in the large scale. This research can provide methods for understanding the spread of information and the flow of disease in other societies facing the threat of pandemics.</description><identifier>DOI: 10.17613/6nctp-hb049</identifier><language>eng</language><publisher>unknown</publisher><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894,4490</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.17613/6nctp-hb049$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ewing, E. Thomas</creatorcontrib><creatorcontrib>Gad, Samah</creatorcontrib><creatorcontrib>Hausman, Bernice Louise</creatorcontrib><creatorcontrib>Kerr, Kathleen</creatorcontrib><creatorcontrib>Pencek, Bruce</creatorcontrib><creatorcontrib>Ramakrishnan, Naren</creatorcontrib><title>An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic</title><description>An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic seeks to harness the power of data mining techniques with the interpretive analytics of the humanities and social sciences to understand how newspapers shaped public opinion and represented authoritative knowledge during this deadly pandemic. This project makes use of the more than 100 newspaper titles for 1918 available from Chronicling America at the United States Library of Congress and the Peel's Prairie Provinces collection at the University of Alberta Library. The application of algorithmic techniques enables the domain expert to systematically explore a broad repository of data and identify qualitative features of the pandemic in the small scale as well as the genealogy of information flow in the large scale. This research can provide methods for understanding the spread of information and the flow of disease in other societies facing the threat of pandemics.</description><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2014</creationdate><recordtype>report</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAxNNAzNDczNNY3y0suKdDNSDIwseRkcHfMU3AtyExJzc3Mz8lPr1TIT1PwzEvLL8pNLMnMz7NScEksSVTwzczLzEtXKMlIVTC0NLQAqcgpTc2rSlQISMwD6U3mYWBNS8wpTuWF0twMOm6uIc4euilA_cmZJanxBUWZuYlFlfGGBvFgd8SD3REPdocxicoBrI9AjQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Ewing, E. Thomas</creator><creator>Gad, Samah</creator><creator>Hausman, Bernice Louise</creator><creator>Kerr, Kathleen</creator><creator>Pencek, Bruce</creator><creator>Ramakrishnan, Naren</creator><general>unknown</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2014</creationdate><title>An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic</title><author>Ewing, E. Thomas ; Gad, Samah ; Hausman, Bernice Louise ; Kerr, Kathleen ; Pencek, Bruce ; Ramakrishnan, Naren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_17613_6nctp_hb0493</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ewing, E. Thomas</creatorcontrib><creatorcontrib>Gad, Samah</creatorcontrib><creatorcontrib>Hausman, Bernice Louise</creatorcontrib><creatorcontrib>Kerr, Kathleen</creatorcontrib><creatorcontrib>Pencek, Bruce</creatorcontrib><creatorcontrib>Ramakrishnan, Naren</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ewing, E. Thomas</au><au>Gad, Samah</au><au>Hausman, Bernice Louise</au><au>Kerr, Kathleen</au><au>Pencek, Bruce</au><au>Ramakrishnan, Naren</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic</btitle><date>2014</date><risdate>2014</risdate><abstract>An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic seeks to harness the power of data mining techniques with the interpretive analytics of the humanities and social sciences to understand how newspapers shaped public opinion and represented authoritative knowledge during this deadly pandemic. This project makes use of the more than 100 newspaper titles for 1918 available from Chronicling America at the United States Library of Congress and the Peel's Prairie Provinces collection at the University of Alberta Library. The application of algorithmic techniques enables the domain expert to systematically explore a broad repository of data and identify qualitative features of the pandemic in the small scale as well as the genealogy of information flow in the large scale. This research can provide methods for understanding the spread of information and the flow of disease in other societies facing the threat of pandemics.</abstract><pub>unknown</pub><doi>10.17613/6nctp-hb049</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.17613/6nctp-hb049 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_17613_6nctp_hb049 |
source | DataCite |
title | An Epidemiology of Information: Data Mining the 1918 Influenza Pandemic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=An%20Epidemiology%20of%20Information:%20Data%20Mining%20the%201918%20Influenza%20Pandemic&rft.au=Ewing,%20E.%20Thomas&rft.date=2014&rft_id=info:doi/10.17613/6nctp-hb049&rft_dat=%3Cdatacite_PQ8%3E10_17613_6nctp_hb049%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |