Seawater carbonate chemistry and properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi

Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein, and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dickinson, Gary H, Bejerano, Shai, Salvador, Trina, Makdisi, Christine, Patel, Shrey, Long, W Christopher, Swiney, Katherine M, Foy, Robert J, Steffel, Brittan V, Smith, Kathryn E, Aronson, Richard B
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Dickinson, Gary H
Bejerano, Shai
Salvador, Trina
Makdisi, Christine
Patel, Shrey
Long, W Christopher
Swiney, Katherine M
Foy, Robert J
Steffel, Brittan V
Smith, Kathryn E
Aronson, Richard B
description Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein, and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels—8.1, 7.8, or 7.5—for two years. Reduced pH led to a suite of body-region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton was observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH-7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH-7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification.
doi_str_mv 10.1594/pangaea.961093
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_1594_pangaea_961093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1594_pangaea_961093</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_1594_pangaea_9610933</originalsourceid><addsrcrecordid>eNqVjjEOgkAQRbexMGprPQdQhKAm1ERjr_1mgEEmwi6ZHaPcXoxcwOr_5r08Y9ZJHCWHbL_r0d2RMMqOSZylc8NXwhcqCZQohXfjhbKhjoPKAOgq6MX3JMoUwNegDQG9fXhQS-odsAOsnq3CDZ37WgSLsIG8Ye88laQjViBLxUszq7ENtJp2YaLz6ZZfthUqlqxke-EOZbBJbL-tdmq1v9b0b-ADPpFQxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Seawater carbonate chemistry and properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi</title><source>DataCite</source><creator>Dickinson, Gary H ; Bejerano, Shai ; Salvador, Trina ; Makdisi, Christine ; Patel, Shrey ; Long, W Christopher ; Swiney, Katherine M ; Foy, Robert J ; Steffel, Brittan V ; Smith, Kathryn E ; Aronson, Richard B</creator><creatorcontrib>Dickinson, Gary H ; Bejerano, Shai ; Salvador, Trina ; Makdisi, Christine ; Patel, Shrey ; Long, W Christopher ; Swiney, Katherine M ; Foy, Robert J ; Steffel, Brittan V ; Smith, Kathryn E ; Aronson, Richard B</creatorcontrib><description>Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein, and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels—8.1, 7.8, or 7.5—for two years. Reduced pH led to a suite of body-region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton was observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH-7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH-7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification.</description><identifier>DOI: 10.1594/pangaea.961093</identifier><language>eng</language><publisher>PANGAEA</publisher><subject>Alkalinity, total ; Alkalinity, total, standard deviation ; Animalia ; Aragonite saturation state ; Arthropoda ; Benthic animals ; Benthos ; Bicarbonate ion ; Bicarbonate ion, standard deviation ; Biomass/Abundance/Elemental composition ; Calcification/Dissolution ; Calcite saturation state ; Calcite saturation state, standard deviation ; Calcium ; Calculated using seacarb ; Calculated using seacarb after Nisumaa et al. ; Carbon dioxide ; Carbon, inorganic, dissolved ; Carbon, inorganic, dissolved, standard deviation ; Carbonate ion ; Carbonate ion, standard deviation ; Carbonate system computation flag ; Category ; Chionoecetes bairdi ; Coast and continental shelf ; Containers and aquaria (20-1000 L or &lt; 1 m2) ; Experiment ; Fugacity of carbon dioxide (water) at sea surface temperature (wet air) ; Growth/Morphology ; Laboratory experiment ; Magnesium ; North Pacific ; Ocean Acidification International Coordination Centre (OA-ICC) ; Other studied parameter or process ; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) ; Partial pressure of carbon dioxide, standard deviation ; pH, free scale ; pH, standard deviation ; pH, total scale ; Pollex damage score ; Salinity ; Salinity, standard deviation ; Sample ID ; Single species ; Species, unique identification ; Species, unique identification (Semantic URI) ; Species, unique identification (URI) ; Strontium ; Temperate ; Temperature, water ; Temperature, water, standard deviation ; Thickness ; Treatment: pH ; Type of study ; v2 peak position, Calcium carbonate ; Vickers Hardness</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1073-1483 ; 0000-0002-4299-319X ; 0000-0002-7095-1245 ; 0000-0001-5482-2710 ; 0000-0002-7240-1490 ; 0000-0003-0477-8883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.1594/pangaea.961093$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dickinson, Gary H</creatorcontrib><creatorcontrib>Bejerano, Shai</creatorcontrib><creatorcontrib>Salvador, Trina</creatorcontrib><creatorcontrib>Makdisi, Christine</creatorcontrib><creatorcontrib>Patel, Shrey</creatorcontrib><creatorcontrib>Long, W Christopher</creatorcontrib><creatorcontrib>Swiney, Katherine M</creatorcontrib><creatorcontrib>Foy, Robert J</creatorcontrib><creatorcontrib>Steffel, Brittan V</creatorcontrib><creatorcontrib>Smith, Kathryn E</creatorcontrib><creatorcontrib>Aronson, Richard B</creatorcontrib><title>Seawater carbonate chemistry and properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi</title><description>Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein, and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels—8.1, 7.8, or 7.5—for two years. Reduced pH led to a suite of body-region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton was observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH-7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH-7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification.</description><subject>Alkalinity, total</subject><subject>Alkalinity, total, standard deviation</subject><subject>Animalia</subject><subject>Aragonite saturation state</subject><subject>Arthropoda</subject><subject>Benthic animals</subject><subject>Benthos</subject><subject>Bicarbonate ion</subject><subject>Bicarbonate ion, standard deviation</subject><subject>Biomass/Abundance/Elemental composition</subject><subject>Calcification/Dissolution</subject><subject>Calcite saturation state</subject><subject>Calcite saturation state, standard deviation</subject><subject>Calcium</subject><subject>Calculated using seacarb</subject><subject>Calculated using seacarb after Nisumaa et al.</subject><subject>Carbon dioxide</subject><subject>Carbon, inorganic, dissolved</subject><subject>Carbon, inorganic, dissolved, standard deviation</subject><subject>Carbonate ion</subject><subject>Carbonate ion, standard deviation</subject><subject>Carbonate system computation flag</subject><subject>Category</subject><subject>Chionoecetes bairdi</subject><subject>Coast and continental shelf</subject><subject>Containers and aquaria (20-1000 L or &lt; 1 m2)</subject><subject>Experiment</subject><subject>Fugacity of carbon dioxide (water) at sea surface temperature (wet air)</subject><subject>Growth/Morphology</subject><subject>Laboratory experiment</subject><subject>Magnesium</subject><subject>North Pacific</subject><subject>Ocean Acidification International Coordination Centre (OA-ICC)</subject><subject>Other studied parameter or process</subject><subject>Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)</subject><subject>Partial pressure of carbon dioxide, standard deviation</subject><subject>pH, free scale</subject><subject>pH, standard deviation</subject><subject>pH, total scale</subject><subject>Pollex damage score</subject><subject>Salinity</subject><subject>Salinity, standard deviation</subject><subject>Sample ID</subject><subject>Single species</subject><subject>Species, unique identification</subject><subject>Species, unique identification (Semantic URI)</subject><subject>Species, unique identification (URI)</subject><subject>Strontium</subject><subject>Temperate</subject><subject>Temperature, water</subject><subject>Temperature, water, standard deviation</subject><subject>Thickness</subject><subject>Treatment: pH</subject><subject>Type of study</subject><subject>v2 peak position, Calcium carbonate</subject><subject>Vickers Hardness</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjjEOgkAQRbexMGprPQdQhKAm1ERjr_1mgEEmwi6ZHaPcXoxcwOr_5r08Y9ZJHCWHbL_r0d2RMMqOSZylc8NXwhcqCZQohXfjhbKhjoPKAOgq6MX3JMoUwNegDQG9fXhQS-odsAOsnq3CDZ37WgSLsIG8Ye88laQjViBLxUszq7ENtJp2YaLz6ZZfthUqlqxke-EOZbBJbL-tdmq1v9b0b-ADPpFQxA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Dickinson, Gary H</creator><creator>Bejerano, Shai</creator><creator>Salvador, Trina</creator><creator>Makdisi, Christine</creator><creator>Patel, Shrey</creator><creator>Long, W Christopher</creator><creator>Swiney, Katherine M</creator><creator>Foy, Robert J</creator><creator>Steffel, Brittan V</creator><creator>Smith, Kathryn E</creator><creator>Aronson, Richard B</creator><general>PANGAEA</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-1073-1483</orcidid><orcidid>https://orcid.org/0000-0002-4299-319X</orcidid><orcidid>https://orcid.org/0000-0002-7095-1245</orcidid><orcidid>https://orcid.org/0000-0001-5482-2710</orcidid><orcidid>https://orcid.org/0000-0002-7240-1490</orcidid><orcidid>https://orcid.org/0000-0003-0477-8883</orcidid></search><sort><creationdate>2023</creationdate><title>Seawater carbonate chemistry and properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi</title><author>Dickinson, Gary H ; Bejerano, Shai ; Salvador, Trina ; Makdisi, Christine ; Patel, Shrey ; Long, W Christopher ; Swiney, Katherine M ; Foy, Robert J ; Steffel, Brittan V ; Smith, Kathryn E ; Aronson, Richard B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_1594_pangaea_9610933</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkalinity, total</topic><topic>Alkalinity, total, standard deviation</topic><topic>Animalia</topic><topic>Aragonite saturation state</topic><topic>Arthropoda</topic><topic>Benthic animals</topic><topic>Benthos</topic><topic>Bicarbonate ion</topic><topic>Bicarbonate ion, standard deviation</topic><topic>Biomass/Abundance/Elemental composition</topic><topic>Calcification/Dissolution</topic><topic>Calcite saturation state</topic><topic>Calcite saturation state, standard deviation</topic><topic>Calcium</topic><topic>Calculated using seacarb</topic><topic>Calculated using seacarb after Nisumaa et al.</topic><topic>Carbon dioxide</topic><topic>Carbon, inorganic, dissolved</topic><topic>Carbon, inorganic, dissolved, standard deviation</topic><topic>Carbonate ion</topic><topic>Carbonate ion, standard deviation</topic><topic>Carbonate system computation flag</topic><topic>Category</topic><topic>Chionoecetes bairdi</topic><topic>Coast and continental shelf</topic><topic>Containers and aquaria (20-1000 L or &lt; 1 m2)</topic><topic>Experiment</topic><topic>Fugacity of carbon dioxide (water) at sea surface temperature (wet air)</topic><topic>Growth/Morphology</topic><topic>Laboratory experiment</topic><topic>Magnesium</topic><topic>North Pacific</topic><topic>Ocean Acidification International Coordination Centre (OA-ICC)</topic><topic>Other studied parameter or process</topic><topic>Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)</topic><topic>Partial pressure of carbon dioxide, standard deviation</topic><topic>pH, free scale</topic><topic>pH, standard deviation</topic><topic>pH, total scale</topic><topic>Pollex damage score</topic><topic>Salinity</topic><topic>Salinity, standard deviation</topic><topic>Sample ID</topic><topic>Single species</topic><topic>Species, unique identification</topic><topic>Species, unique identification (Semantic URI)</topic><topic>Species, unique identification (URI)</topic><topic>Strontium</topic><topic>Temperate</topic><topic>Temperature, water</topic><topic>Temperature, water, standard deviation</topic><topic>Thickness</topic><topic>Treatment: pH</topic><topic>Type of study</topic><topic>v2 peak position, Calcium carbonate</topic><topic>Vickers Hardness</topic><toplevel>online_resources</toplevel><creatorcontrib>Dickinson, Gary H</creatorcontrib><creatorcontrib>Bejerano, Shai</creatorcontrib><creatorcontrib>Salvador, Trina</creatorcontrib><creatorcontrib>Makdisi, Christine</creatorcontrib><creatorcontrib>Patel, Shrey</creatorcontrib><creatorcontrib>Long, W Christopher</creatorcontrib><creatorcontrib>Swiney, Katherine M</creatorcontrib><creatorcontrib>Foy, Robert J</creatorcontrib><creatorcontrib>Steffel, Brittan V</creatorcontrib><creatorcontrib>Smith, Kathryn E</creatorcontrib><creatorcontrib>Aronson, Richard B</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dickinson, Gary H</au><au>Bejerano, Shai</au><au>Salvador, Trina</au><au>Makdisi, Christine</au><au>Patel, Shrey</au><au>Long, W Christopher</au><au>Swiney, Katherine M</au><au>Foy, Robert J</au><au>Steffel, Brittan V</au><au>Smith, Kathryn E</au><au>Aronson, Richard B</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Seawater carbonate chemistry and properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi</title><date>2023</date><risdate>2023</risdate><abstract>Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein, and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels—8.1, 7.8, or 7.5—for two years. Reduced pH led to a suite of body-region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton was observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH-7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH-7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification.</abstract><pub>PANGAEA</pub><doi>10.1594/pangaea.961093</doi><orcidid>https://orcid.org/0000-0003-1073-1483</orcidid><orcidid>https://orcid.org/0000-0002-4299-319X</orcidid><orcidid>https://orcid.org/0000-0002-7095-1245</orcidid><orcidid>https://orcid.org/0000-0001-5482-2710</orcidid><orcidid>https://orcid.org/0000-0002-7240-1490</orcidid><orcidid>https://orcid.org/0000-0003-0477-8883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1594/pangaea.961093
ispartof
issn
language eng
recordid cdi_datacite_primary_10_1594_pangaea_961093
source DataCite
subjects Alkalinity, total
Alkalinity, total, standard deviation
Animalia
Aragonite saturation state
Arthropoda
Benthic animals
Benthos
Bicarbonate ion
Bicarbonate ion, standard deviation
Biomass/Abundance/Elemental composition
Calcification/Dissolution
Calcite saturation state
Calcite saturation state, standard deviation
Calcium
Calculated using seacarb
Calculated using seacarb after Nisumaa et al.
Carbon dioxide
Carbon, inorganic, dissolved
Carbon, inorganic, dissolved, standard deviation
Carbonate ion
Carbonate ion, standard deviation
Carbonate system computation flag
Category
Chionoecetes bairdi
Coast and continental shelf
Containers and aquaria (20-1000 L or < 1 m2)
Experiment
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Growth/Morphology
Laboratory experiment
Magnesium
North Pacific
Ocean Acidification International Coordination Centre (OA-ICC)
Other studied parameter or process
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Partial pressure of carbon dioxide, standard deviation
pH, free scale
pH, standard deviation
pH, total scale
Pollex damage score
Salinity
Salinity, standard deviation
Sample ID
Single species
Species, unique identification
Species, unique identification (Semantic URI)
Species, unique identification (URI)
Strontium
Temperate
Temperature, water
Temperature, water, standard deviation
Thickness
Treatment: pH
Type of study
v2 peak position, Calcium carbonate
Vickers Hardness
title Seawater carbonate chemistry and properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Dickinson,%20Gary%20H&rft.date=2023&rft_id=info:doi/10.1594/pangaea.961093&rft_dat=%3Cdatacite_PQ8%3E10_1594_pangaea_961093%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true