Optimal perturbation (classic, Re=2000,A=1,Wo=15): snapshot axial velocity t=tf
The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Xu, Duo Song, Baofang Avila, Marc |
description | The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed.The data file 'OptimalPerturbation_helical_time_vel_vort.dat' shows the time series of the three velocity components and three vorticity components of the optimal classic perturbation. This file includes eight columns: the first column indicates dimensionless time; the second column indicates the time normalized by period; the third column indicates the radial velocity of the perturbation; the fourth column indicates the azimuthal velocity of the perturbation; the fifth column indicates the streamwise velocity of the perturbation; the sixth column indicates the radial component of vorticity; the seventh column indicates the azimuthal component of vorticity; the eighth column indicates the streamwise component of vorticity. |
doi_str_mv | 10.1594/pangaea.932540 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_1594_pangaea_932540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1594_pangaea_932540</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_1594_pangaea_9325403</originalsourceid><addsrcrecordid>eNqVjr0KwjAURrM4iLo6Z1SoNenPUCGDiOJWEKFjuNZUA7EJyVXs21uxL-D0Ld_hHELmnMU8L7K1g_YGCuIiTfKMjUlZOtQPMNQpj09_AdS2pYvaQAi6juhJiYQxFm0FjyoreL7c0NCCC3eLFN66J1_K2FpjR1FgMyWjBkxQs2EnJD7sz7vj6goI_UtJ53uf7yRn8lskhyL5K0r_Bj76R0Qq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Optimal perturbation (classic, Re=2000,A=1,Wo=15): snapshot axial velocity t=tf</title><source>DataCite</source><creator>Xu, Duo ; Song, Baofang ; Avila, Marc</creator><creatorcontrib>Xu, Duo ; Song, Baofang ; Avila, Marc</creatorcontrib><description>The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed.The data file 'OptimalPerturbation_helical_time_vel_vort.dat' shows the time series of the three velocity components and three vorticity components of the optimal classic perturbation. This file includes eight columns: the first column indicates dimensionless time; the second column indicates the time normalized by period; the third column indicates the radial velocity of the perturbation; the fourth column indicates the azimuthal velocity of the perturbation; the fifth column indicates the streamwise velocity of the perturbation; the sixth column indicates the radial component of vorticity; the seventh column indicates the azimuthal component of vorticity; the eighth column indicates the streamwise component of vorticity.</description><identifier>DOI: 10.1594/pangaea.932540</identifier><language>eng</language><publisher>PANGAEA</publisher><subject>Model simulation ; nonlinear instability ; r, coordinate, cylindrical, radial component ; transition to turbulence ; u_z, velocity, cylindrical, axial component ; z, coordinate, cylindrical, axial component</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8330-3581 ; 0000-0001-5988-1090 ; 0000-0003-4469-8781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.1594/pangaea.932540$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Xu, Duo</creatorcontrib><creatorcontrib>Song, Baofang</creatorcontrib><creatorcontrib>Avila, Marc</creatorcontrib><title>Optimal perturbation (classic, Re=2000,A=1,Wo=15): snapshot axial velocity t=tf</title><description>The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed.The data file 'OptimalPerturbation_helical_time_vel_vort.dat' shows the time series of the three velocity components and three vorticity components of the optimal classic perturbation. This file includes eight columns: the first column indicates dimensionless time; the second column indicates the time normalized by period; the third column indicates the radial velocity of the perturbation; the fourth column indicates the azimuthal velocity of the perturbation; the fifth column indicates the streamwise velocity of the perturbation; the sixth column indicates the radial component of vorticity; the seventh column indicates the azimuthal component of vorticity; the eighth column indicates the streamwise component of vorticity.</description><subject>Model simulation</subject><subject>nonlinear instability</subject><subject>r, coordinate, cylindrical, radial component</subject><subject>transition to turbulence</subject><subject>u_z, velocity, cylindrical, axial component</subject><subject>z, coordinate, cylindrical, axial component</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjr0KwjAURrM4iLo6Z1SoNenPUCGDiOJWEKFjuNZUA7EJyVXs21uxL-D0Ld_hHELmnMU8L7K1g_YGCuIiTfKMjUlZOtQPMNQpj09_AdS2pYvaQAi6juhJiYQxFm0FjyoreL7c0NCCC3eLFN66J1_K2FpjR1FgMyWjBkxQs2EnJD7sz7vj6goI_UtJ53uf7yRn8lskhyL5K0r_Bj76R0Qq</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xu, Duo</creator><creator>Song, Baofang</creator><creator>Avila, Marc</creator><general>PANGAEA</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0001-8330-3581</orcidid><orcidid>https://orcid.org/0000-0001-5988-1090</orcidid><orcidid>https://orcid.org/0000-0003-4469-8781</orcidid></search><sort><creationdate>2021</creationdate><title>Optimal perturbation (classic, Re=2000,A=1,Wo=15): snapshot axial velocity t=tf</title><author>Xu, Duo ; Song, Baofang ; Avila, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_1594_pangaea_9325403</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Model simulation</topic><topic>nonlinear instability</topic><topic>r, coordinate, cylindrical, radial component</topic><topic>transition to turbulence</topic><topic>u_z, velocity, cylindrical, axial component</topic><topic>z, coordinate, cylindrical, axial component</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Duo</creatorcontrib><creatorcontrib>Song, Baofang</creatorcontrib><creatorcontrib>Avila, Marc</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Duo</au><au>Song, Baofang</au><au>Avila, Marc</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Optimal perturbation (classic, Re=2000,A=1,Wo=15): snapshot axial velocity t=tf</title><date>2021</date><risdate>2021</risdate><abstract>The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed.The data file 'OptimalPerturbation_helical_time_vel_vort.dat' shows the time series of the three velocity components and three vorticity components of the optimal classic perturbation. This file includes eight columns: the first column indicates dimensionless time; the second column indicates the time normalized by period; the third column indicates the radial velocity of the perturbation; the fourth column indicates the azimuthal velocity of the perturbation; the fifth column indicates the streamwise velocity of the perturbation; the sixth column indicates the radial component of vorticity; the seventh column indicates the azimuthal component of vorticity; the eighth column indicates the streamwise component of vorticity.</abstract><pub>PANGAEA</pub><doi>10.1594/pangaea.932540</doi><orcidid>https://orcid.org/0000-0001-8330-3581</orcidid><orcidid>https://orcid.org/0000-0001-5988-1090</orcidid><orcidid>https://orcid.org/0000-0003-4469-8781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.1594/pangaea.932540 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_1594_pangaea_932540 |
source | DataCite |
subjects | Model simulation nonlinear instability r, coordinate, cylindrical, radial component transition to turbulence u_z, velocity, cylindrical, axial component z, coordinate, cylindrical, axial component |
title | Optimal perturbation (classic, Re=2000,A=1,Wo=15): snapshot axial velocity t=tf |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Xu,%20Duo&rft.date=2021&rft_id=info:doi/10.1594/pangaea.932540&rft_dat=%3Cdatacite_PQ8%3E10_1594_pangaea_932540%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |