Crofton formulas in pseudo-Riemannian space forms

Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bernig, A, Faifman, D, Solanes, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bernig, A
Faifman, D
Solanes, G
description Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s).
format Article
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_535409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_535409</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_5354093</originalsourceid><addsrcrecordid>eNrjZDB0LspPK8nPU0jLL8otzUksVsjMUygoTi1NydcNykzNTczLy0zMUyguSExOBasp5mFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFmxqbmhhYGpOjBwCSvjkN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crofton formulas in pseudo-Riemannian space forms</title><source>Recercat</source><creator>Bernig, A ; Faifman, D ; Solanes, G</creator><creatorcontrib>Bernig, A ; Faifman, D ; Solanes, G</creatorcontrib><description>Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s).</description><language>eng</language><publisher>Cambridge University Press</publisher><subject>Crofton formula; Lipschitz-Killing curvature measures; pseudo-Riemannian space form; valuation</subject><creationdate>2022-10</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/535409$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bernig, A</creatorcontrib><creatorcontrib>Faifman, D</creatorcontrib><creatorcontrib>Solanes, G</creatorcontrib><title>Crofton formulas in pseudo-Riemannian space forms</title><description>Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s).</description><subject>Crofton formula; Lipschitz-Killing curvature measures; pseudo-Riemannian space form; valuation</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNrjZDB0LspPK8nPU0jLL8otzUksVsjMUygoTi1NydcNykzNTczLy0zMUyguSExOBasp5mFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFmxqbmhhYGpOjBwCSvjkN</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Bernig, A</creator><creator>Faifman, D</creator><creator>Solanes, G</creator><general>Cambridge University Press</general><scope>XX2</scope></search><sort><creationdate>20221028</creationdate><title>Crofton formulas in pseudo-Riemannian space forms</title><author>Bernig, A ; Faifman, D ; Solanes, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_5354093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crofton formula; Lipschitz-Killing curvature measures; pseudo-Riemannian space form; valuation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernig, A</creatorcontrib><creatorcontrib>Faifman, D</creatorcontrib><creatorcontrib>Solanes, G</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernig, A</au><au>Faifman, D</au><au>Solanes, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crofton formulas in pseudo-Riemannian space forms</atitle><date>2022-10-28</date><risdate>2022</risdate><abstract>Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s).</abstract><pub>Cambridge University Press</pub><tpages>47</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_535409
source Recercat
subjects Crofton formula
Lipschitz-Killing curvature measures
pseudo-Riemannian space form
valuation
title Crofton formulas in pseudo-Riemannian space forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crofton%20formulas%20in%20pseudo-Riemannian%20space%20forms&rft.au=Bernig,%20A&rft.date=2022-10-28&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_535409%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true