Crofton formulas in pseudo-Riemannian space forms
Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Bernig, A Faifman, D Solanes, G |
description | Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s). |
format | Article |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_535409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_535409</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_5354093</originalsourceid><addsrcrecordid>eNrjZDB0LspPK8nPU0jLL8otzUksVsjMUygoTi1NydcNykzNTczLy0zMUyguSExOBasp5mFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFmxqbmhhYGpOjBwCSvjkN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crofton formulas in pseudo-Riemannian space forms</title><source>Recercat</source><creator>Bernig, A ; Faifman, D ; Solanes, G</creator><creatorcontrib>Bernig, A ; Faifman, D ; Solanes, G</creatorcontrib><description>Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s).</description><language>eng</language><publisher>Cambridge University Press</publisher><subject>Crofton formula; Lipschitz-Killing curvature measures; pseudo-Riemannian space form; valuation</subject><creationdate>2022-10</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/535409$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bernig, A</creatorcontrib><creatorcontrib>Faifman, D</creatorcontrib><creatorcontrib>Solanes, G</creatorcontrib><title>Crofton formulas in pseudo-Riemannian space forms</title><description>Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s).</description><subject>Crofton formula; Lipschitz-Killing curvature measures; pseudo-Riemannian space form; valuation</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNrjZDB0LspPK8nPU0jLL8otzUksVsjMUygoTi1NydcNykzNTczLy0zMUyguSExOBasp5mFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFmxqbmhhYGpOjBwCSvjkN</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Bernig, A</creator><creator>Faifman, D</creator><creator>Solanes, G</creator><general>Cambridge University Press</general><scope>XX2</scope></search><sort><creationdate>20221028</creationdate><title>Crofton formulas in pseudo-Riemannian space forms</title><author>Bernig, A ; Faifman, D ; Solanes, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_5354093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crofton formula; Lipschitz-Killing curvature measures; pseudo-Riemannian space form; valuation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernig, A</creatorcontrib><creatorcontrib>Faifman, D</creatorcontrib><creatorcontrib>Solanes, G</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernig, A</au><au>Faifman, D</au><au>Solanes, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crofton formulas in pseudo-Riemannian space forms</atitle><date>2022-10-28</date><risdate>2022</risdate><abstract>Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature. © 2022 The Author(s).</abstract><pub>Cambridge University Press</pub><tpages>47</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_535409 |
source | Recercat |
subjects | Crofton formula Lipschitz-Killing curvature measures pseudo-Riemannian space form valuation |
title | Crofton formulas in pseudo-Riemannian space forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crofton%20formulas%20in%20pseudo-Riemannian%20space%20forms&rft.au=Bernig,%20A&rft.date=2022-10-28&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_535409%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |