Parrondo's paradox for homoeomorphisms
We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f∘g and g∘f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gasull, Armengol Hernández-Corbato, L Ruiz Del Portal, F. R |
description | We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f∘g and g∘f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension > 2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions. |
format | Article |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_529233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_529233</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_5292333</originalsourceid><addsrcrecordid>eNrjZFALSCwqys9LyVcvVihILEpMya9QSMsvUsjIz81PBeKigozM4txiHgbWtMSc4lReKM3NYOjmGuLsoZtcXJocX5SanFqUnFgSn5-YieCAsJGBuVG8qZGlkbGxMTl6AAbJNS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parrondo's paradox for homoeomorphisms</title><source>Recercat</source><creator>Gasull, Armengol ; Hernández-Corbato, L ; Ruiz Del Portal, F. R</creator><creatorcontrib>Gasull, Armengol ; Hernández-Corbato, L ; Ruiz Del Portal, F. R</creatorcontrib><description>We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f∘g and g∘f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension > 2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.</description><language>eng</language><subject>Dynamical Parrondo's paradox ; Fixed points ; Local and global asymptotic stability ; Random dynamical systems</subject><creationdate>2022</creationdate><rights>open access Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. https://creativecommons.org/licenses/by-nc-nd/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/529233$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gasull, Armengol</creatorcontrib><creatorcontrib>Hernández-Corbato, L</creatorcontrib><creatorcontrib>Ruiz Del Portal, F. R</creatorcontrib><title>Parrondo's paradox for homoeomorphisms</title><description>We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f∘g and g∘f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension > 2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.</description><subject>Dynamical Parrondo's paradox</subject><subject>Fixed points</subject><subject>Local and global asymptotic stability</subject><subject>Random dynamical systems</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNrjZFALSCwqys9LyVcvVihILEpMya9QSMsvUsjIz81PBeKigozM4txiHgbWtMSc4lReKM3NYOjmGuLsoZtcXJocX5SanFqUnFgSn5-YieCAsJGBuVG8qZGlkbGxMTl6AAbJNS8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Gasull, Armengol</creator><creator>Hernández-Corbato, L</creator><creator>Ruiz Del Portal, F. R</creator><scope>XX2</scope></search><sort><creationdate>2022</creationdate><title>Parrondo's paradox for homoeomorphisms</title><author>Gasull, Armengol ; Hernández-Corbato, L ; Ruiz Del Portal, F. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_5292333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dynamical Parrondo's paradox</topic><topic>Fixed points</topic><topic>Local and global asymptotic stability</topic><topic>Random dynamical systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Gasull, Armengol</creatorcontrib><creatorcontrib>Hernández-Corbato, L</creatorcontrib><creatorcontrib>Ruiz Del Portal, F. R</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gasull, Armengol</au><au>Hernández-Corbato, L</au><au>Ruiz Del Portal, F. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parrondo's paradox for homoeomorphisms</atitle><date>2022</date><risdate>2022</risdate><abstract>We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f∘g and g∘f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension > 2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_529233 |
source | Recercat |
subjects | Dynamical Parrondo's paradox Fixed points Local and global asymptotic stability Random dynamical systems |
title | Parrondo's paradox for homoeomorphisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parrondo's%20paradox%20for%20homoeomorphisms&rft.au=Gasull,%20Armengol&rft.date=2022&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_529233%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |