Analysis of the Measurement Matrix in Directional Predictive Coding for Compressive Sensing of Medical Images

Compressive sensing of 2D signals involves three fundamental steps: sparse representation, linear measurement matrix, and recovery of the signal. This paper focuses on analyzing the efficiency of various measurement matrices for compressive sensing of medical images based on theoretical predictive c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Christinal, Hepzibah A, Kowsalya, G, Chandy D., Abraham, Jebasingh, Stephenraj, Bajaj, Chandrajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Christinal, Hepzibah A
Kowsalya, G
Chandy D., Abraham
Jebasingh, Stephenraj
Bajaj, Chandrajit
description Compressive sensing of 2D signals involves three fundamental steps: sparse representation, linear measurement matrix, and recovery of the signal. This paper focuses on analyzing the efficiency of various measurement matrices for compressive sensing of medical images based on theoretical predictive coding. During encoding, the prediction is efficiently chosen by four directional predictive modes for block-based compressive sensing measurements. In this work, Gaussian, Bernoulli, Laplace, Logistic, and Cauchy random matrices are used as the measurement matrices. While decoding, the same optimal prediction is de-quantized. Peak-signal-to-noise ratio and sparsity are used for evaluating the performance of measurement matrices. The experimental result shows that the spatially directional predictive coding (SDPC) with Laplace measurement matrices performs better compared to scalar quantization (SQ) and differential pulse code modulation (DPCM) methods. The results indicate that the Laplace measurement matrix is the most suitable in compressive sensing of medical images.
format Article
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_527882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_527882</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_5278823</originalsourceid><addsrcrecordid>eNqdTUEKwjAQ7MWDqH_YDwgakfYqVdFDQdB7CemmLjSJ7KaivzcBwbuHYWeGmdlp4XZeD28hgWAh3hEa1DIyOvQRGh2ZXkAe9sRoIoUUhgtjR0k8EerQke_BBk7UPRhFsn1FL9lPk03OptLZ6R5lXkysHgQX3zsr1sfDrT4tjYymTS-QjY5t0PQTGWpVqnaryqpSm386H9OSTu0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of the Measurement Matrix in Directional Predictive Coding for Compressive Sensing of Medical Images</title><source>Recercat</source><creator>Christinal, Hepzibah A ; Kowsalya, G ; Chandy D., Abraham ; Jebasingh, Stephenraj ; Bajaj, Chandrajit</creator><creatorcontrib>Christinal, Hepzibah A ; Kowsalya, G ; Chandy D., Abraham ; Jebasingh, Stephenraj ; Bajaj, Chandrajit</creatorcontrib><description>Compressive sensing of 2D signals involves three fundamental steps: sparse representation, linear measurement matrix, and recovery of the signal. This paper focuses on analyzing the efficiency of various measurement matrices for compressive sensing of medical images based on theoretical predictive coding. During encoding, the prediction is efficiently chosen by four directional predictive modes for block-based compressive sensing measurements. In this work, Gaussian, Bernoulli, Laplace, Logistic, and Cauchy random matrices are used as the measurement matrices. While decoding, the same optimal prediction is de-quantized. Peak-signal-to-noise ratio and sparsity are used for evaluating the performance of measurement matrices. The experimental result shows that the spatially directional predictive coding (SDPC) with Laplace measurement matrices performs better compared to scalar quantization (SQ) and differential pulse code modulation (DPCM) methods. The results indicate that the Laplace measurement matrix is the most suitable in compressive sensing of medical images.</description><language>eng</language><subject>Applications ; Coding and compression ; Medical image analysis ; Statistical pattern recognition</subject><creationdate>2022-12</creationdate><rights>open access Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. https://creativecommons.org/licenses/by-nc-nd/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26951</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/527882$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Christinal, Hepzibah A</creatorcontrib><creatorcontrib>Kowsalya, G</creatorcontrib><creatorcontrib>Chandy D., Abraham</creatorcontrib><creatorcontrib>Jebasingh, Stephenraj</creatorcontrib><creatorcontrib>Bajaj, Chandrajit</creatorcontrib><title>Analysis of the Measurement Matrix in Directional Predictive Coding for Compressive Sensing of Medical Images</title><description>Compressive sensing of 2D signals involves three fundamental steps: sparse representation, linear measurement matrix, and recovery of the signal. This paper focuses on analyzing the efficiency of various measurement matrices for compressive sensing of medical images based on theoretical predictive coding. During encoding, the prediction is efficiently chosen by four directional predictive modes for block-based compressive sensing measurements. In this work, Gaussian, Bernoulli, Laplace, Logistic, and Cauchy random matrices are used as the measurement matrices. While decoding, the same optimal prediction is de-quantized. Peak-signal-to-noise ratio and sparsity are used for evaluating the performance of measurement matrices. The experimental result shows that the spatially directional predictive coding (SDPC) with Laplace measurement matrices performs better compared to scalar quantization (SQ) and differential pulse code modulation (DPCM) methods. The results indicate that the Laplace measurement matrix is the most suitable in compressive sensing of medical images.</description><subject>Applications</subject><subject>Coding and compression</subject><subject>Medical image analysis</subject><subject>Statistical pattern recognition</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqdTUEKwjAQ7MWDqH_YDwgakfYqVdFDQdB7CemmLjSJ7KaivzcBwbuHYWeGmdlp4XZeD28hgWAh3hEa1DIyOvQRGh2ZXkAe9sRoIoUUhgtjR0k8EerQke_BBk7UPRhFsn1FL9lPk03OptLZ6R5lXkysHgQX3zsr1sfDrT4tjYymTS-QjY5t0PQTGWpVqnaryqpSm386H9OSTu0</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Christinal, Hepzibah A</creator><creator>Kowsalya, G</creator><creator>Chandy D., Abraham</creator><creator>Jebasingh, Stephenraj</creator><creator>Bajaj, Chandrajit</creator><scope>XX2</scope></search><sort><creationdate>20221212</creationdate><title>Analysis of the Measurement Matrix in Directional Predictive Coding for Compressive Sensing of Medical Images</title><author>Christinal, Hepzibah A ; Kowsalya, G ; Chandy D., Abraham ; Jebasingh, Stephenraj ; Bajaj, Chandrajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_5278823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications</topic><topic>Coding and compression</topic><topic>Medical image analysis</topic><topic>Statistical pattern recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Christinal, Hepzibah A</creatorcontrib><creatorcontrib>Kowsalya, G</creatorcontrib><creatorcontrib>Chandy D., Abraham</creatorcontrib><creatorcontrib>Jebasingh, Stephenraj</creatorcontrib><creatorcontrib>Bajaj, Chandrajit</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Christinal, Hepzibah A</au><au>Kowsalya, G</au><au>Chandy D., Abraham</au><au>Jebasingh, Stephenraj</au><au>Bajaj, Chandrajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Measurement Matrix in Directional Predictive Coding for Compressive Sensing of Medical Images</atitle><date>2022-12-12</date><risdate>2022</risdate><abstract>Compressive sensing of 2D signals involves three fundamental steps: sparse representation, linear measurement matrix, and recovery of the signal. This paper focuses on analyzing the efficiency of various measurement matrices for compressive sensing of medical images based on theoretical predictive coding. During encoding, the prediction is efficiently chosen by four directional predictive modes for block-based compressive sensing measurements. In this work, Gaussian, Bernoulli, Laplace, Logistic, and Cauchy random matrices are used as the measurement matrices. While decoding, the same optimal prediction is de-quantized. Peak-signal-to-noise ratio and sparsity are used for evaluating the performance of measurement matrices. The experimental result shows that the spatially directional predictive coding (SDPC) with Laplace measurement matrices performs better compared to scalar quantization (SQ) and differential pulse code modulation (DPCM) methods. The results indicate that the Laplace measurement matrix is the most suitable in compressive sensing of medical images.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_527882
source Recercat
subjects Applications
Coding and compression
Medical image analysis
Statistical pattern recognition
title Analysis of the Measurement Matrix in Directional Predictive Coding for Compressive Sensing of Medical Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Measurement%20Matrix%20in%20Directional%20Predictive%20Coding%20for%20Compressive%20Sensing%20of%20Medical%20Images&rft.au=Christinal,%20Hepzibah%20A&rft.date=2022-12-12&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_527882%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true