Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate

Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eller, Cleiton B, Rowland, Lucy, Mencuccini, Maurizio, Rosas, Teresa, Williams, Karina, Harper, Anna, Medlyn, Belinda E, Wagner, Yael, Klein, Tamir, Teodoro, Grazielle S, Oliveira, Rafael S, Matos, Ilaine S, Rosado, Bruno H. P, Fuchs, Kathrin, Wohlfahrt, Georg, Montagnani, Leonardo, Meir, Patrick, Sitch, Stephen, Cox, Peter M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Eller, Cleiton B
Rowland, Lucy
Mencuccini, Maurizio
Rosas, Teresa
Williams, Karina
Harper, Anna
Medlyn, Belinda E
Wagner, Yael
Klein, Tamir
Teodoro, Grazielle S
Oliveira, Rafael S
Matos, Ilaine S
Rosado, Bruno H. P
Fuchs, Kathrin
Wohlfahrt, Georg
Montagnani, Leonardo
Meir, Patrick
Sitch, Stephen
Cox, Peter M
description Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.
format Article
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_523393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_523393</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_5233933</originalsourceid><addsrcrecordid>eNqdjTELwjAUhLs4iPof3qiDoA0izqK4OdTBrTyTVw0kfSUvKdbFv25Fwd3huPuGuxtmzyKyx4gOuInW2wdGyzVcUMhAH-6dIw-3zgRMzmqBaXE8z8D6JnBLAg5rA5JChZrAsyEHYn1ynxmuoKUrxQ8FkoZr6VuRQTvb_9I4G1TohCZfH2XL_e60Pcy1JF0G0hQ0xpLR_uCtfLHOy1Wu1Eapfzov1ClWqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate</title><source>Recercat</source><creator>Eller, Cleiton B ; Rowland, Lucy ; Mencuccini, Maurizio ; Rosas, Teresa ; Williams, Karina ; Harper, Anna ; Medlyn, Belinda E ; Wagner, Yael ; Klein, Tamir ; Teodoro, Grazielle S ; Oliveira, Rafael S ; Matos, Ilaine S ; Rosado, Bruno H. P ; Fuchs, Kathrin ; Wohlfahrt, Georg ; Montagnani, Leonardo ; Meir, Patrick ; Sitch, Stephen ; Cox, Peter M</creator><creatorcontrib>Eller, Cleiton B ; Rowland, Lucy ; Mencuccini, Maurizio ; Rosas, Teresa ; Williams, Karina ; Harper, Anna ; Medlyn, Belinda E ; Wagner, Yael ; Klein, Tamir ; Teodoro, Grazielle S ; Oliveira, Rafael S ; Matos, Ilaine S ; Rosado, Bruno H. P ; Fuchs, Kathrin ; Wohlfahrt, Georg ; Montagnani, Leonardo ; Meir, Patrick ; Sitch, Stephen ; Cox, Peter M</creatorcontrib><description>Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.</description><language>eng</language><subject>Climate change ; Drought ; Eddy covariance ; Land-surface models ; Stomatal optimization ; Xylem hydraulics</subject><creationdate>2022-10</creationdate><rights>open access Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. https://creativecommons.org/licenses/by/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/523393$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Eller, Cleiton B</creatorcontrib><creatorcontrib>Rowland, Lucy</creatorcontrib><creatorcontrib>Mencuccini, Maurizio</creatorcontrib><creatorcontrib>Rosas, Teresa</creatorcontrib><creatorcontrib>Williams, Karina</creatorcontrib><creatorcontrib>Harper, Anna</creatorcontrib><creatorcontrib>Medlyn, Belinda E</creatorcontrib><creatorcontrib>Wagner, Yael</creatorcontrib><creatorcontrib>Klein, Tamir</creatorcontrib><creatorcontrib>Teodoro, Grazielle S</creatorcontrib><creatorcontrib>Oliveira, Rafael S</creatorcontrib><creatorcontrib>Matos, Ilaine S</creatorcontrib><creatorcontrib>Rosado, Bruno H. P</creatorcontrib><creatorcontrib>Fuchs, Kathrin</creatorcontrib><creatorcontrib>Wohlfahrt, Georg</creatorcontrib><creatorcontrib>Montagnani, Leonardo</creatorcontrib><creatorcontrib>Meir, Patrick</creatorcontrib><creatorcontrib>Sitch, Stephen</creatorcontrib><creatorcontrib>Cox, Peter M</creatorcontrib><title>Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate</title><description>Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.</description><subject>Climate change</subject><subject>Drought</subject><subject>Eddy covariance</subject><subject>Land-surface models</subject><subject>Stomatal optimization</subject><subject>Xylem hydraulics</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqdjTELwjAUhLs4iPof3qiDoA0izqK4OdTBrTyTVw0kfSUvKdbFv25Fwd3huPuGuxtmzyKyx4gOuInW2wdGyzVcUMhAH-6dIw-3zgRMzmqBaXE8z8D6JnBLAg5rA5JChZrAsyEHYn1ynxmuoKUrxQ8FkoZr6VuRQTvb_9I4G1TohCZfH2XL_e60Pcy1JF0G0hQ0xpLR_uCtfLHOy1Wu1Eapfzov1ClWqA</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Eller, Cleiton B</creator><creator>Rowland, Lucy</creator><creator>Mencuccini, Maurizio</creator><creator>Rosas, Teresa</creator><creator>Williams, Karina</creator><creator>Harper, Anna</creator><creator>Medlyn, Belinda E</creator><creator>Wagner, Yael</creator><creator>Klein, Tamir</creator><creator>Teodoro, Grazielle S</creator><creator>Oliveira, Rafael S</creator><creator>Matos, Ilaine S</creator><creator>Rosado, Bruno H. P</creator><creator>Fuchs, Kathrin</creator><creator>Wohlfahrt, Georg</creator><creator>Montagnani, Leonardo</creator><creator>Meir, Patrick</creator><creator>Sitch, Stephen</creator><creator>Cox, Peter M</creator><scope>XX2</scope></search><sort><creationdate>20221028</creationdate><title>Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate</title><author>Eller, Cleiton B ; Rowland, Lucy ; Mencuccini, Maurizio ; Rosas, Teresa ; Williams, Karina ; Harper, Anna ; Medlyn, Belinda E ; Wagner, Yael ; Klein, Tamir ; Teodoro, Grazielle S ; Oliveira, Rafael S ; Matos, Ilaine S ; Rosado, Bruno H. P ; Fuchs, Kathrin ; Wohlfahrt, Georg ; Montagnani, Leonardo ; Meir, Patrick ; Sitch, Stephen ; Cox, Peter M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_5233933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Climate change</topic><topic>Drought</topic><topic>Eddy covariance</topic><topic>Land-surface models</topic><topic>Stomatal optimization</topic><topic>Xylem hydraulics</topic><toplevel>online_resources</toplevel><creatorcontrib>Eller, Cleiton B</creatorcontrib><creatorcontrib>Rowland, Lucy</creatorcontrib><creatorcontrib>Mencuccini, Maurizio</creatorcontrib><creatorcontrib>Rosas, Teresa</creatorcontrib><creatorcontrib>Williams, Karina</creatorcontrib><creatorcontrib>Harper, Anna</creatorcontrib><creatorcontrib>Medlyn, Belinda E</creatorcontrib><creatorcontrib>Wagner, Yael</creatorcontrib><creatorcontrib>Klein, Tamir</creatorcontrib><creatorcontrib>Teodoro, Grazielle S</creatorcontrib><creatorcontrib>Oliveira, Rafael S</creatorcontrib><creatorcontrib>Matos, Ilaine S</creatorcontrib><creatorcontrib>Rosado, Bruno H. P</creatorcontrib><creatorcontrib>Fuchs, Kathrin</creatorcontrib><creatorcontrib>Wohlfahrt, Georg</creatorcontrib><creatorcontrib>Montagnani, Leonardo</creatorcontrib><creatorcontrib>Meir, Patrick</creatorcontrib><creatorcontrib>Sitch, Stephen</creatorcontrib><creatorcontrib>Cox, Peter M</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eller, Cleiton B</au><au>Rowland, Lucy</au><au>Mencuccini, Maurizio</au><au>Rosas, Teresa</au><au>Williams, Karina</au><au>Harper, Anna</au><au>Medlyn, Belinda E</au><au>Wagner, Yael</au><au>Klein, Tamir</au><au>Teodoro, Grazielle S</au><au>Oliveira, Rafael S</au><au>Matos, Ilaine S</au><au>Rosado, Bruno H. P</au><au>Fuchs, Kathrin</au><au>Wohlfahrt, Georg</au><au>Montagnani, Leonardo</au><au>Meir, Patrick</au><au>Sitch, Stephen</au><au>Cox, Peter M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate</atitle><date>2022-10-28</date><risdate>2022</risdate><abstract>Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_523393
source Recercat
subjects Climate change
Drought
Eddy covariance
Land-surface models
Stomatal optimization
Xylem hydraulics
title Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stomatal%20optimization%20based%20on%20xylem%20hydraulics%20(SOX)%20improves%20land%20surface%20model%20simulation%20of%20vegetation%20responses%20to%20climate&rft.au=Eller,%20Cleiton%20B&rft.date=2022-10-28&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_523393%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true