Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows

Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ramayo-Caldas, Yuliaxis, Zingaretti, Laura M, Popova, Milka, Estellé, Jordi, Bernard, Aurelien, Pons, Nicolas, Bellot, Pau, Mach Casellas, Núria, Rau, Andrea, Roume, Hugo, Perez-Enciso, Miguel, Faverdin, Philippe, Edouard, Nadège, Ehrlich, Dusko, Morgavi, Diego P, Renand, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ramayo-Caldas, Yuliaxis
Zingaretti, Laura M
Popova, Milka
Estellé, Jordi
Bernard, Aurelien
Pons, Nicolas
Bellot, Pau
Mach Casellas, Núria
Rau, Andrea
Roume, Hugo
Perez-Enciso, Miguel
Faverdin, Philippe
Edouard, Nadège
Ehrlich, Dusko
Morgavi, Diego P
Renand, Gilles
description Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH4y = CH4/DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial leastsquares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.
format Article
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_506650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_506650</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_5066503</originalsourceid><addsrcrecordid>eNqdjUEKwkAMRbtxIeodcgFhrLQeQJS6d21JpymGzkwgmSLe3hYE9y4-_7_F46-Lx62nlHlgj5klgQygU6QEkb1KxxigY4moI6lB4DRSD1kgUn5iIqDIZovICRoJlmkePbK-wcvLtsVqwGC0-_amOFwv93Oz9zb5VsmTzsetIP9gSelOZVu5uq7c8R_nA4DMSiE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows</title><source>Recercat</source><creator>Ramayo-Caldas, Yuliaxis ; Zingaretti, Laura M ; Popova, Milka ; Estellé, Jordi ; Bernard, Aurelien ; Pons, Nicolas ; Bellot, Pau ; Mach Casellas, Núria ; Rau, Andrea ; Roume, Hugo ; Perez-Enciso, Miguel ; Faverdin, Philippe ; Edouard, Nadège ; Ehrlich, Dusko ; Morgavi, Diego P ; Renand, Gilles</creator><creatorcontrib>Ramayo-Caldas, Yuliaxis ; Zingaretti, Laura M ; Popova, Milka ; Estellé, Jordi ; Bernard, Aurelien ; Pons, Nicolas ; Bellot, Pau ; Mach Casellas, Núria ; Rau, Andrea ; Roume, Hugo ; Perez-Enciso, Miguel ; Faverdin, Philippe ; Edouard, Nadège ; Ehrlich, Dusko ; Morgavi, Diego P ; Renand, Gilles</creatorcontrib><description>Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH4y = CH4/DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial leastsquares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.</description><language>eng</language><subject>Metagenomics ; Metataxonomics ; Methane emission ; Microbial biomarker</subject><creationdate>2020</creationdate><rights>open access Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. https://creativecommons.org/licenses/by/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26973</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/506650$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ramayo-Caldas, Yuliaxis</creatorcontrib><creatorcontrib>Zingaretti, Laura M</creatorcontrib><creatorcontrib>Popova, Milka</creatorcontrib><creatorcontrib>Estellé, Jordi</creatorcontrib><creatorcontrib>Bernard, Aurelien</creatorcontrib><creatorcontrib>Pons, Nicolas</creatorcontrib><creatorcontrib>Bellot, Pau</creatorcontrib><creatorcontrib>Mach Casellas, Núria</creatorcontrib><creatorcontrib>Rau, Andrea</creatorcontrib><creatorcontrib>Roume, Hugo</creatorcontrib><creatorcontrib>Perez-Enciso, Miguel</creatorcontrib><creatorcontrib>Faverdin, Philippe</creatorcontrib><creatorcontrib>Edouard, Nadège</creatorcontrib><creatorcontrib>Ehrlich, Dusko</creatorcontrib><creatorcontrib>Morgavi, Diego P</creatorcontrib><creatorcontrib>Renand, Gilles</creatorcontrib><title>Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows</title><description>Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH4y = CH4/DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial leastsquares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.</description><subject>Metagenomics</subject><subject>Metataxonomics</subject><subject>Methane emission</subject><subject>Microbial biomarker</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqdjUEKwkAMRbtxIeodcgFhrLQeQJS6d21JpymGzkwgmSLe3hYE9y4-_7_F46-Lx62nlHlgj5klgQygU6QEkb1KxxigY4moI6lB4DRSD1kgUn5iIqDIZovICRoJlmkePbK-wcvLtsVqwGC0-_amOFwv93Oz9zb5VsmTzsetIP9gSelOZVu5uq7c8R_nA4DMSiE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ramayo-Caldas, Yuliaxis</creator><creator>Zingaretti, Laura M</creator><creator>Popova, Milka</creator><creator>Estellé, Jordi</creator><creator>Bernard, Aurelien</creator><creator>Pons, Nicolas</creator><creator>Bellot, Pau</creator><creator>Mach Casellas, Núria</creator><creator>Rau, Andrea</creator><creator>Roume, Hugo</creator><creator>Perez-Enciso, Miguel</creator><creator>Faverdin, Philippe</creator><creator>Edouard, Nadège</creator><creator>Ehrlich, Dusko</creator><creator>Morgavi, Diego P</creator><creator>Renand, Gilles</creator><scope>XX2</scope></search><sort><creationdate>2020</creationdate><title>Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows</title><author>Ramayo-Caldas, Yuliaxis ; Zingaretti, Laura M ; Popova, Milka ; Estellé, Jordi ; Bernard, Aurelien ; Pons, Nicolas ; Bellot, Pau ; Mach Casellas, Núria ; Rau, Andrea ; Roume, Hugo ; Perez-Enciso, Miguel ; Faverdin, Philippe ; Edouard, Nadège ; Ehrlich, Dusko ; Morgavi, Diego P ; Renand, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_5066503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Metagenomics</topic><topic>Metataxonomics</topic><topic>Methane emission</topic><topic>Microbial biomarker</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramayo-Caldas, Yuliaxis</creatorcontrib><creatorcontrib>Zingaretti, Laura M</creatorcontrib><creatorcontrib>Popova, Milka</creatorcontrib><creatorcontrib>Estellé, Jordi</creatorcontrib><creatorcontrib>Bernard, Aurelien</creatorcontrib><creatorcontrib>Pons, Nicolas</creatorcontrib><creatorcontrib>Bellot, Pau</creatorcontrib><creatorcontrib>Mach Casellas, Núria</creatorcontrib><creatorcontrib>Rau, Andrea</creatorcontrib><creatorcontrib>Roume, Hugo</creatorcontrib><creatorcontrib>Perez-Enciso, Miguel</creatorcontrib><creatorcontrib>Faverdin, Philippe</creatorcontrib><creatorcontrib>Edouard, Nadège</creatorcontrib><creatorcontrib>Ehrlich, Dusko</creatorcontrib><creatorcontrib>Morgavi, Diego P</creatorcontrib><creatorcontrib>Renand, Gilles</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramayo-Caldas, Yuliaxis</au><au>Zingaretti, Laura M</au><au>Popova, Milka</au><au>Estellé, Jordi</au><au>Bernard, Aurelien</au><au>Pons, Nicolas</au><au>Bellot, Pau</au><au>Mach Casellas, Núria</au><au>Rau, Andrea</au><au>Roume, Hugo</au><au>Perez-Enciso, Miguel</au><au>Faverdin, Philippe</au><au>Edouard, Nadège</au><au>Ehrlich, Dusko</au><au>Morgavi, Diego P</au><au>Renand, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows</atitle><date>2020</date><risdate>2020</risdate><abstract>Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH4y = CH4/DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial leastsquares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_506650
source Recercat
subjects Metagenomics
Metataxonomics
Methane emission
Microbial biomarker
title Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20rumen%20microbial%20biomarkers%20linked%20to%20methane%20emission%20in%20Holstein%20dairy%20cows&rft.au=Ramayo-Caldas,%20Yuliaxis&rft.date=2020&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_506650%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true