Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning

The catalyzed semihydrogenation of dibromomethane (CH2Br2) to methyl bromide (CH3Br) is a key step in the bromine-mediated upgradation of methane. This study presents a cutting-edge strategy combining density functional theory (DFT), catalytic tests complemented with the extensive characterization o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saadun, A. J, Pablo-García, S, Paunović, V, Li, Q, Sabadell-Rendón, A, Kleemann, K, Krumeich, F, López, N, Pérez-Ramírez, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Saadun, A. J
Pablo-García, S
Paunović, V
Li, Q
Sabadell-Rendón, A
Kleemann, K
Krumeich, F
López, N
Pérez-Ramírez, J
description The catalyzed semihydrogenation of dibromomethane (CH2Br2) to methyl bromide (CH3Br) is a key step in the bromine-mediated upgradation of methane. This study presents a cutting-edge strategy combining density functional theory (DFT), catalytic tests complemented with the extensive characterization of a wide range of metal catalysts (Fe, Co, Ni, Cu, Ru, Rh, Ag, Ir, and Pt), and statistical tools for a computer-assisted investigation of this reaction. The steady-state catalytic tests identified four classes of materials comprising (i) poorly active (
format Article
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_450539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_450539</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_4505393</originalsourceid><addsrcrecordid>eNqdi8EKwkAMRHvxIOo_7A8UamsRj9IqPSgIei9xm9VAu5HsKlTw391CwbuHTGaGN9Poc0IxLB1YjYqNOqKHNi4gaP_GRlV9I9zgVbgjC57YDlRJQ8Ed-jtYVFs70tdelei00MOzuOCFXqE2AVZnH-bOk4ZWHRDEkr3No4mB1uFi_LNoud9diirW7qlrQY2iwdcM9AvDpck6rVd5kmeb7J_NFyNIVfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning</title><source>Recercat</source><creator>Saadun, A. J ; Pablo-García, S ; Paunović, V ; Li, Q ; Sabadell-Rendón, A ; Kleemann, K ; Krumeich, F ; López, N ; Pérez-Ramírez, J</creator><creatorcontrib>Saadun, A. J ; Pablo-García, S ; Paunović, V ; Li, Q ; Sabadell-Rendón, A ; Kleemann, K ; Krumeich, F ; López, N ; Pérez-Ramírez, J</creatorcontrib><description>The catalyzed semihydrogenation of dibromomethane (CH2Br2) to methyl bromide (CH3Br) is a key step in the bromine-mediated upgradation of methane. This study presents a cutting-edge strategy combining density functional theory (DFT), catalytic tests complemented with the extensive characterization of a wide range of metal catalysts (Fe, Co, Ni, Cu, Ru, Rh, Ag, Ir, and Pt), and statistical tools for a computer-assisted investigation of this reaction. The steady-state catalytic tests identified four classes of materials comprising (i) poorly active (&lt;8%) Fe/SiO2, Co/SiO2, Cu/SiO2, and Ag/SiO2; (ii) Rh/SiO2 and Ni/SiO2, which exhibit intermediate CH3Br selectivity (&lt;60%); (iii) Ir/SiO2 and Pt/SiO2, which display great propensity to CH4 (&gt;50%); and (iv) Ru/SiO2, which exhibits the highest selectivity to CH3Br (up to 96%). In-depth characterization of representative catalysts in fresh and used forms was done by X-ray diffraction, inductively coupled plasma optical emission spectroscopy, N2 sorption, temperature-programmed reduction, Raman spectroscopy, electron microscopy, and X-ray photoelectron spectroscopy. The dimensionality reduction performed on the 272 DFT intermediate adsorption energies using principal component analysis identified two descriptors that, when employed together with the experimental data in a random forest regressor, enabled the understanding of activity and selectivity trends by connecting them to the energy intervals of the descriptors. In addition, a representative analytic model was found using the Bayesian inference. These findings illustrate the exciting opportunities presented by integrated experimental/computational screening and set the fundamental basis for the accelerated discovery of superior hydrodebromination catalysts and beyond.</description><language>eng</language><creationdate>2020-04</creationdate><rights>L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/450539$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Saadun, A. J</creatorcontrib><creatorcontrib>Pablo-García, S</creatorcontrib><creatorcontrib>Paunović, V</creatorcontrib><creatorcontrib>Li, Q</creatorcontrib><creatorcontrib>Sabadell-Rendón, A</creatorcontrib><creatorcontrib>Kleemann, K</creatorcontrib><creatorcontrib>Krumeich, F</creatorcontrib><creatorcontrib>López, N</creatorcontrib><creatorcontrib>Pérez-Ramírez, J</creatorcontrib><title>Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning</title><description>The catalyzed semihydrogenation of dibromomethane (CH2Br2) to methyl bromide (CH3Br) is a key step in the bromine-mediated upgradation of methane. This study presents a cutting-edge strategy combining density functional theory (DFT), catalytic tests complemented with the extensive characterization of a wide range of metal catalysts (Fe, Co, Ni, Cu, Ru, Rh, Ag, Ir, and Pt), and statistical tools for a computer-assisted investigation of this reaction. The steady-state catalytic tests identified four classes of materials comprising (i) poorly active (&lt;8%) Fe/SiO2, Co/SiO2, Cu/SiO2, and Ag/SiO2; (ii) Rh/SiO2 and Ni/SiO2, which exhibit intermediate CH3Br selectivity (&lt;60%); (iii) Ir/SiO2 and Pt/SiO2, which display great propensity to CH4 (&gt;50%); and (iv) Ru/SiO2, which exhibits the highest selectivity to CH3Br (up to 96%). In-depth characterization of representative catalysts in fresh and used forms was done by X-ray diffraction, inductively coupled plasma optical emission spectroscopy, N2 sorption, temperature-programmed reduction, Raman spectroscopy, electron microscopy, and X-ray photoelectron spectroscopy. The dimensionality reduction performed on the 272 DFT intermediate adsorption energies using principal component analysis identified two descriptors that, when employed together with the experimental data in a random forest regressor, enabled the understanding of activity and selectivity trends by connecting them to the energy intervals of the descriptors. In addition, a representative analytic model was found using the Bayesian inference. These findings illustrate the exciting opportunities presented by integrated experimental/computational screening and set the fundamental basis for the accelerated discovery of superior hydrodebromination catalysts and beyond.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqdi8EKwkAMRHvxIOo_7A8UamsRj9IqPSgIei9xm9VAu5HsKlTw391CwbuHTGaGN9Poc0IxLB1YjYqNOqKHNi4gaP_GRlV9I9zgVbgjC57YDlRJQ8Ed-jtYVFs70tdelei00MOzuOCFXqE2AVZnH-bOk4ZWHRDEkr3No4mB1uFi_LNoud9diirW7qlrQY2iwdcM9AvDpck6rVd5kmeb7J_NFyNIVfk</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Saadun, A. J</creator><creator>Pablo-García, S</creator><creator>Paunović, V</creator><creator>Li, Q</creator><creator>Sabadell-Rendón, A</creator><creator>Kleemann, K</creator><creator>Krumeich, F</creator><creator>López, N</creator><creator>Pérez-Ramírez, J</creator><scope>XX2</scope></search><sort><creationdate>20200410</creationdate><title>Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning</title><author>Saadun, A. J ; Pablo-García, S ; Paunović, V ; Li, Q ; Sabadell-Rendón, A ; Kleemann, K ; Krumeich, F ; López, N ; Pérez-Ramírez, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_4505393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Saadun, A. J</creatorcontrib><creatorcontrib>Pablo-García, S</creatorcontrib><creatorcontrib>Paunović, V</creatorcontrib><creatorcontrib>Li, Q</creatorcontrib><creatorcontrib>Sabadell-Rendón, A</creatorcontrib><creatorcontrib>Kleemann, K</creatorcontrib><creatorcontrib>Krumeich, F</creatorcontrib><creatorcontrib>López, N</creatorcontrib><creatorcontrib>Pérez-Ramírez, J</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saadun, A. J</au><au>Pablo-García, S</au><au>Paunović, V</au><au>Li, Q</au><au>Sabadell-Rendón, A</au><au>Kleemann, K</au><au>Krumeich, F</au><au>López, N</au><au>Pérez-Ramírez, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning</atitle><date>2020-04-10</date><risdate>2020</risdate><abstract>The catalyzed semihydrogenation of dibromomethane (CH2Br2) to methyl bromide (CH3Br) is a key step in the bromine-mediated upgradation of methane. This study presents a cutting-edge strategy combining density functional theory (DFT), catalytic tests complemented with the extensive characterization of a wide range of metal catalysts (Fe, Co, Ni, Cu, Ru, Rh, Ag, Ir, and Pt), and statistical tools for a computer-assisted investigation of this reaction. The steady-state catalytic tests identified four classes of materials comprising (i) poorly active (&lt;8%) Fe/SiO2, Co/SiO2, Cu/SiO2, and Ag/SiO2; (ii) Rh/SiO2 and Ni/SiO2, which exhibit intermediate CH3Br selectivity (&lt;60%); (iii) Ir/SiO2 and Pt/SiO2, which display great propensity to CH4 (&gt;50%); and (iv) Ru/SiO2, which exhibits the highest selectivity to CH3Br (up to 96%). In-depth characterization of representative catalysts in fresh and used forms was done by X-ray diffraction, inductively coupled plasma optical emission spectroscopy, N2 sorption, temperature-programmed reduction, Raman spectroscopy, electron microscopy, and X-ray photoelectron spectroscopy. The dimensionality reduction performed on the 272 DFT intermediate adsorption energies using principal component analysis identified two descriptors that, when employed together with the experimental data in a random forest regressor, enabled the understanding of activity and selectivity trends by connecting them to the energy intervals of the descriptors. In addition, a representative analytic model was found using the Bayesian inference. These findings illustrate the exciting opportunities presented by integrated experimental/computational screening and set the fundamental basis for the accelerated discovery of superior hydrodebromination catalysts and beyond.</abstract><tpages>6129</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_450539
source Recercat
title Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20Metal-Catalyzed%20Hydrodebromination%20of%20Dibromomethane%20Analyzed%20by%20Descriptors%20Derived%20from%20Statistical%20Learning&rft.au=Saadun,%20A.%20J&rft.date=2020-04-10&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_450539%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true