Neuron-Level Fuzzy Memoization in RNNs
Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | |
container_start_page | 782 |
container_title | |
container_volume | |
creator | Silfa, Franyell Dot, Gem Arnau, Jose-Maria Gonzàlez, Antonio |
description | Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence processing problems.
For each application run, each recurrent layer is executed many times for processing a potentially large sequence of inputs (words, images, audio frames, etc.). In this paper, we make the observation that the output of a neuron exhibits small changes in consecutive invocations. We exploit this property to build a neuron-level fuzzy memoization scheme, which dynamically caches the output of each neuron and reuses it whenever it is predicted that the current output will be similar to a previously computed result, avoiding in this way the output computations.
The main challenge in this scheme is determining whether the new neuron's output for the current input in the sequence will be similar to a recently computed result. To this end, we extend the recurrent layer with a much simpler Bitwise Neural Network (BNN), and show that the BNN and RNN outputs are highly correlated: if two BNN outputs are very similar, the corresponding outputs in the original RNN layer are likely to exhibit negligible changes. The BNN provides a low-cost and effective mechanism for deciding when fuzzy memoization can be applied with a small impact on accuracy.
We evaluate our memoization scheme on top of a state-of-the-art accelerator for RNNs, for a variety of different neural networks from multiple application domains. We show that our technique avoids more than 24.2% of computations, resulting in 18.5% energy savings and 1.35x speedup on average. |
doi_str_mv | 10.1145/3352460.3358309 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_370097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_370097</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-c8f76fa2543fcb0d4c02a61743d4c8fe6a4c1bb0dd7d4ad832fe44a4a1727ded3</originalsourceid><addsrcrecordid>eNqNkM1LxDAQxQMiKGvPXnsSL62TjzbJURZXhVpB9BzSfEB1t4GmFexfb5YtePUwvBnee3P4IXSNocSYVXeUVoTVUCYVFOQZyiQXyQBaSyrwBcpi_AQAIjiWIC_RTevmMQxF477dPt_Ny_KTv7hD6Bc99WHI-yF_a9t4hc693keXrbpBH7uH9-1T0bw-Pm_vm0JTJqfCCM9rr0nFqDcdWGaA6BpzRtMqvKs1M7hLhuWWaSso8Y4xzTTmhFtn6Qbh018TZ6NGZ9xo9KSC7v-O4xDgRFEOIHnq3J462hxUF8JXVBjUEYdacagVR4qW_4yqbuydp79tU195</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neuron-Level Fuzzy Memoization in RNNs</title><source>Recercat</source><creator>Silfa, Franyell ; Dot, Gem ; Arnau, Jose-Maria ; Gonzàlez, Antonio</creator><creatorcontrib>Silfa, Franyell ; Dot, Gem ; Arnau, Jose-Maria ; Gonzàlez, Antonio</creatorcontrib><description>Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence processing problems.
For each application run, each recurrent layer is executed many times for processing a potentially large sequence of inputs (words, images, audio frames, etc.). In this paper, we make the observation that the output of a neuron exhibits small changes in consecutive invocations. We exploit this property to build a neuron-level fuzzy memoization scheme, which dynamically caches the output of each neuron and reuses it whenever it is predicted that the current output will be similar to a previously computed result, avoiding in this way the output computations.
The main challenge in this scheme is determining whether the new neuron's output for the current input in the sequence will be similar to a recently computed result. To this end, we extend the recurrent layer with a much simpler Bitwise Neural Network (BNN), and show that the BNN and RNN outputs are highly correlated: if two BNN outputs are very similar, the corresponding outputs in the original RNN layer are likely to exhibit negligible changes. The BNN provides a low-cost and effective mechanism for deciding when fuzzy memoization can be applied with a small impact on accuracy.
We evaluate our memoization scheme on top of a state-of-the-art accelerator for RNNs, for a variety of different neural networks from multiple application domains. We show that our technique avoids more than 24.2% of computations, resulting in 18.5% energy savings and 1.35x speedup on average.</description><identifier>ISBN: 9781450369381</identifier><identifier>ISBN: 1450369383</identifier><identifier>DOI: 10.1145/3352460.3358309</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Automatic speech recognition ; Binary networks ; Computer systems organization -- Architectures -- Other architectures -- Neural networks ; Computing methodologies -- Machine learning ; Enginyeria de la telecomunicació ; Informàtica ; Long short term memory ; Machine learning ; Memoization ; Neural networks (Computer science) ; Processament de la parla i del senyal acústic ; Processament del senyal ; Reconeixement automàtic de la parla ; Recurrent neural networks ; Xarxes neuronals (Informàtica) ; Àrees temàtiques de la UPC</subject><ispartof>Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019, p.782-793</ispartof><rights>2019 ACM</rights><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,776,881,26951</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/370097$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Silfa, Franyell</creatorcontrib><creatorcontrib>Dot, Gem</creatorcontrib><creatorcontrib>Arnau, Jose-Maria</creatorcontrib><creatorcontrib>Gonzàlez, Antonio</creatorcontrib><title>Neuron-Level Fuzzy Memoization in RNNs</title><title>Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture</title><description>Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence processing problems.
For each application run, each recurrent layer is executed many times for processing a potentially large sequence of inputs (words, images, audio frames, etc.). In this paper, we make the observation that the output of a neuron exhibits small changes in consecutive invocations. We exploit this property to build a neuron-level fuzzy memoization scheme, which dynamically caches the output of each neuron and reuses it whenever it is predicted that the current output will be similar to a previously computed result, avoiding in this way the output computations.
The main challenge in this scheme is determining whether the new neuron's output for the current input in the sequence will be similar to a recently computed result. To this end, we extend the recurrent layer with a much simpler Bitwise Neural Network (BNN), and show that the BNN and RNN outputs are highly correlated: if two BNN outputs are very similar, the corresponding outputs in the original RNN layer are likely to exhibit negligible changes. The BNN provides a low-cost and effective mechanism for deciding when fuzzy memoization can be applied with a small impact on accuracy.
We evaluate our memoization scheme on top of a state-of-the-art accelerator for RNNs, for a variety of different neural networks from multiple application domains. We show that our technique avoids more than 24.2% of computations, resulting in 18.5% energy savings and 1.35x speedup on average.</description><subject>Automatic speech recognition</subject><subject>Binary networks</subject><subject>Computer systems organization -- Architectures -- Other architectures -- Neural networks</subject><subject>Computing methodologies -- Machine learning</subject><subject>Enginyeria de la telecomunicació</subject><subject>Informàtica</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>Memoization</subject><subject>Neural networks (Computer science)</subject><subject>Processament de la parla i del senyal acústic</subject><subject>Processament del senyal</subject><subject>Reconeixement automàtic de la parla</subject><subject>Recurrent neural networks</subject><subject>Xarxes neuronals (Informàtica)</subject><subject>Àrees temàtiques de la UPC</subject><isbn>9781450369381</isbn><isbn>1450369383</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>XX2</sourceid><recordid>eNqNkM1LxDAQxQMiKGvPXnsSL62TjzbJURZXhVpB9BzSfEB1t4GmFexfb5YtePUwvBnee3P4IXSNocSYVXeUVoTVUCYVFOQZyiQXyQBaSyrwBcpi_AQAIjiWIC_RTevmMQxF477dPt_Ny_KTv7hD6Bc99WHI-yF_a9t4hc693keXrbpBH7uH9-1T0bw-Pm_vm0JTJqfCCM9rr0nFqDcdWGaA6BpzRtMqvKs1M7hLhuWWaSso8Y4xzTTmhFtn6Qbh018TZ6NGZ9xo9KSC7v-O4xDgRFEOIHnq3J462hxUF8JXVBjUEYdacagVR4qW_4yqbuydp79tU195</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Silfa, Franyell</creator><creator>Dot, Gem</creator><creator>Arnau, Jose-Maria</creator><creator>Gonzàlez, Antonio</creator><general>ACM</general><general>Association for Computing Machinery (ACM)</general><scope>XX2</scope></search><sort><creationdate>20190101</creationdate><title>Neuron-Level Fuzzy Memoization in RNNs</title><author>Silfa, Franyell ; Dot, Gem ; Arnau, Jose-Maria ; Gonzàlez, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-c8f76fa2543fcb0d4c02a61743d4c8fe6a4c1bb0dd7d4ad832fe44a4a1727ded3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automatic speech recognition</topic><topic>Binary networks</topic><topic>Computer systems organization -- Architectures -- Other architectures -- Neural networks</topic><topic>Computing methodologies -- Machine learning</topic><topic>Enginyeria de la telecomunicació</topic><topic>Informàtica</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>Memoization</topic><topic>Neural networks (Computer science)</topic><topic>Processament de la parla i del senyal acústic</topic><topic>Processament del senyal</topic><topic>Reconeixement automàtic de la parla</topic><topic>Recurrent neural networks</topic><topic>Xarxes neuronals (Informàtica)</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Silfa, Franyell</creatorcontrib><creatorcontrib>Dot, Gem</creatorcontrib><creatorcontrib>Arnau, Jose-Maria</creatorcontrib><creatorcontrib>Gonzàlez, Antonio</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silfa, Franyell</au><au>Dot, Gem</au><au>Arnau, Jose-Maria</au><au>Gonzàlez, Antonio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neuron-Level Fuzzy Memoization in RNNs</atitle><btitle>Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture</btitle><date>2019-01-01</date><risdate>2019</risdate><spage>782</spage><epage>793</epage><pages>782-793</pages><isbn>9781450369381</isbn><isbn>1450369383</isbn><abstract>Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence processing problems.
For each application run, each recurrent layer is executed many times for processing a potentially large sequence of inputs (words, images, audio frames, etc.). In this paper, we make the observation that the output of a neuron exhibits small changes in consecutive invocations. We exploit this property to build a neuron-level fuzzy memoization scheme, which dynamically caches the output of each neuron and reuses it whenever it is predicted that the current output will be similar to a previously computed result, avoiding in this way the output computations.
The main challenge in this scheme is determining whether the new neuron's output for the current input in the sequence will be similar to a recently computed result. To this end, we extend the recurrent layer with a much simpler Bitwise Neural Network (BNN), and show that the BNN and RNN outputs are highly correlated: if two BNN outputs are very similar, the corresponding outputs in the original RNN layer are likely to exhibit negligible changes. The BNN provides a low-cost and effective mechanism for deciding when fuzzy memoization can be applied with a small impact on accuracy.
We evaluate our memoization scheme on top of a state-of-the-art accelerator for RNNs, for a variety of different neural networks from multiple application domains. We show that our technique avoids more than 24.2% of computations, resulting in 18.5% energy savings and 1.35x speedup on average.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3352460.3358309</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781450369381 |
ispartof | Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019, p.782-793 |
issn | |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_370097 |
source | Recercat |
subjects | Automatic speech recognition Binary networks Computer systems organization -- Architectures -- Other architectures -- Neural networks Computing methodologies -- Machine learning Enginyeria de la telecomunicació Informàtica Long short term memory Machine learning Memoization Neural networks (Computer science) Processament de la parla i del senyal acústic Processament del senyal Reconeixement automàtic de la parla Recurrent neural networks Xarxes neuronals (Informàtica) Àrees temàtiques de la UPC |
title | Neuron-Level Fuzzy Memoization in RNNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neuron-Level%20Fuzzy%20Memoization%20in%20RNNs&rft.btitle=Proceedings%20of%20the%2052nd%20Annual%20IEEE/ACM%20International%20Symposium%20on%20Microarchitecture&rft.au=Silfa,%20Franyell&rft.date=2019-01-01&rft.spage=782&rft.epage=793&rft.pages=782-793&rft.isbn=9781450369381&rft.isbn_list=1450369383&rft_id=info:doi/10.1145/3352460.3358309&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_370097%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |