Predictive chiller operation: A data-driven loading and scheduling approach

•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2020-02, Vol.208, p.109639, Article 109639
Hauptverfasser: Sala-Cardoso, Enric, Delgado-Prieto, Miguel, Kampouropoulos, Konstantinos, Romeral, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109639
container_title Energy and buildings
container_volume 208
creator Sala-Cardoso, Enric
Delgado-Prieto, Miguel
Kampouropoulos, Konstantinos
Romeral, Luis
description •A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology. The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation.
doi_str_mv 10.1016/j.enbuild.2019.109639
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_368732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778819322327</els_id><sourcerecordid>2351571698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKHgumMebR5uZBh84YAudB3Sm9RJqe2YtAP-ezN2wKWLEM5NzuHcD6FLghcEE37dLFxXjb61C4qJSjPFmTpCMyIFzTkR8hjNMBMyF0LKU3QWY4Mx5qUgM_T8Gpz1MPidy2Dj29aFrN-6YAbfdzfZMrNmMLkN6b3L2t5Y331kprNZhI2zY_srt9vQG9ico5PatNFdHO45er-_e1s95uuXh6fVcp1DIdSQG1xjpQAklUVFgBHFsagKjsERAKsqK8vClEIahlmlaMWY4opR5ipiWM3YHJEpF-IIOjhwAcyge-P_xP5QLKhmXIrknaOryZOqfo0uDrrpx9ClmpqykiQWXMn0qzwkhz7G4Gq9Df7ThG9NsN6z1o0-sNZ71npinXy3k8-ltXfeBR3Buw4S2tRo0Lb3_yT8AGPmiXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351571698</pqid></control><display><type>article</type><title>Predictive chiller operation: A data-driven loading and scheduling approach</title><source>Elsevier ScienceDirect Journals</source><source>Recercat</source><creator>Sala-Cardoso, Enric ; Delgado-Prieto, Miguel ; Kampouropoulos, Konstantinos ; Romeral, Luis</creator><creatorcontrib>Sala-Cardoso, Enric ; Delgado-Prieto, Miguel ; Kampouropoulos, Konstantinos ; Romeral, Luis</creatorcontrib><description>•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology. The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2019.109639</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air conditioners ; Air conditioning ; Chiller scheduling ; Chillers ; Computer simulation ; Demand-side management ; Eficiència energètica ; Energia ; Energies ; Energy conservation ; Energy consumption ; Energy efficiency ; Estalvi ; HVAC equipment ; Installation ; Instrumentation ; Model-predictive control ; Multiple criterion ; Neural networks ; Operational performance ; Optimal chiller loading ; Power demand ; Predictive control ; Scheduling ; Àrees temàtiques de la UPC</subject><ispartof>Energy and buildings, 2020-02, Vol.208, p.109639, Article 109639</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Feb 1, 2020</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</citedby><cites>FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2019.109639$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,26953,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Sala-Cardoso, Enric</creatorcontrib><creatorcontrib>Delgado-Prieto, Miguel</creatorcontrib><creatorcontrib>Kampouropoulos, Konstantinos</creatorcontrib><creatorcontrib>Romeral, Luis</creatorcontrib><title>Predictive chiller operation: A data-driven loading and scheduling approach</title><title>Energy and buildings</title><description>•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology. The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Chiller scheduling</subject><subject>Chillers</subject><subject>Computer simulation</subject><subject>Demand-side management</subject><subject>Eficiència energètica</subject><subject>Energia</subject><subject>Energies</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Estalvi</subject><subject>HVAC equipment</subject><subject>Installation</subject><subject>Instrumentation</subject><subject>Model-predictive control</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Operational performance</subject><subject>Optimal chiller loading</subject><subject>Power demand</subject><subject>Predictive control</subject><subject>Scheduling</subject><subject>Àrees temàtiques de la UPC</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkEtLxDAUhYMoOI7-BKHgumMebR5uZBh84YAudB3Sm9RJqe2YtAP-ezN2wKWLEM5NzuHcD6FLghcEE37dLFxXjb61C4qJSjPFmTpCMyIFzTkR8hjNMBMyF0LKU3QWY4Mx5qUgM_T8Gpz1MPidy2Dj29aFrN-6YAbfdzfZMrNmMLkN6b3L2t5Y331kprNZhI2zY_srt9vQG9ico5PatNFdHO45er-_e1s95uuXh6fVcp1DIdSQG1xjpQAklUVFgBHFsagKjsERAKsqK8vClEIahlmlaMWY4opR5ipiWM3YHJEpF-IIOjhwAcyge-P_xP5QLKhmXIrknaOryZOqfo0uDrrpx9ClmpqykiQWXMn0qzwkhz7G4Gq9Df7ThG9NsN6z1o0-sNZ71npinXy3k8-ltXfeBR3Buw4S2tRo0Lb3_yT8AGPmiXo</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Sala-Cardoso, Enric</creator><creator>Delgado-Prieto, Miguel</creator><creator>Kampouropoulos, Konstantinos</creator><creator>Romeral, Luis</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>XX2</scope></search><sort><creationdate>20200201</creationdate><title>Predictive chiller operation: A data-driven loading and scheduling approach</title><author>Sala-Cardoso, Enric ; Delgado-Prieto, Miguel ; Kampouropoulos, Konstantinos ; Romeral, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Chiller scheduling</topic><topic>Chillers</topic><topic>Computer simulation</topic><topic>Demand-side management</topic><topic>Eficiència energètica</topic><topic>Energia</topic><topic>Energies</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Estalvi</topic><topic>HVAC equipment</topic><topic>Installation</topic><topic>Instrumentation</topic><topic>Model-predictive control</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Operational performance</topic><topic>Optimal chiller loading</topic><topic>Power demand</topic><topic>Predictive control</topic><topic>Scheduling</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sala-Cardoso, Enric</creatorcontrib><creatorcontrib>Delgado-Prieto, Miguel</creatorcontrib><creatorcontrib>Kampouropoulos, Konstantinos</creatorcontrib><creatorcontrib>Romeral, Luis</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Recercat</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sala-Cardoso, Enric</au><au>Delgado-Prieto, Miguel</au><au>Kampouropoulos, Konstantinos</au><au>Romeral, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive chiller operation: A data-driven loading and scheduling approach</atitle><jtitle>Energy and buildings</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>208</volume><spage>109639</spage><pages>109639-</pages><artnum>109639</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology. The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2019.109639</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2020-02, Vol.208, p.109639, Article 109639
issn 0378-7788
1872-6178
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_368732
source Elsevier ScienceDirect Journals; Recercat
subjects Air conditioners
Air conditioning
Chiller scheduling
Chillers
Computer simulation
Demand-side management
Eficiència energètica
Energia
Energies
Energy conservation
Energy consumption
Energy efficiency
Estalvi
HVAC equipment
Installation
Instrumentation
Model-predictive control
Multiple criterion
Neural networks
Operational performance
Optimal chiller loading
Power demand
Predictive control
Scheduling
Àrees temàtiques de la UPC
title Predictive chiller operation: A data-driven loading and scheduling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20chiller%20operation:%20A%20data-driven%20loading%20and%20scheduling%20approach&rft.jtitle=Energy%20and%20buildings&rft.au=Sala-Cardoso,%20Enric&rft.date=2020-02-01&rft.volume=208&rft.spage=109639&rft.pages=109639-&rft.artnum=109639&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2019.109639&rft_dat=%3Cproquest_csuc_%3E2351571698%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351571698&rft_id=info:pmid/&rft_els_id=S0378778819322327&rfr_iscdi=true