Predictive chiller operation: A data-driven loading and scheduling approach
•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chill...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2020-02, Vol.208, p.109639, Article 109639 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109639 |
container_title | Energy and buildings |
container_volume | 208 |
creator | Sala-Cardoso, Enric Delgado-Prieto, Miguel Kampouropoulos, Konstantinos Romeral, Luis |
description | •A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology.
The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation. |
doi_str_mv | 10.1016/j.enbuild.2019.109639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_368732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778819322327</els_id><sourcerecordid>2351571698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKHgumMebR5uZBh84YAudB3Sm9RJqe2YtAP-ezN2wKWLEM5NzuHcD6FLghcEE37dLFxXjb61C4qJSjPFmTpCMyIFzTkR8hjNMBMyF0LKU3QWY4Mx5qUgM_T8Gpz1MPidy2Dj29aFrN-6YAbfdzfZMrNmMLkN6b3L2t5Y331kprNZhI2zY_srt9vQG9ico5PatNFdHO45er-_e1s95uuXh6fVcp1DIdSQG1xjpQAklUVFgBHFsagKjsERAKsqK8vClEIahlmlaMWY4opR5ipiWM3YHJEpF-IIOjhwAcyge-P_xP5QLKhmXIrknaOryZOqfo0uDrrpx9ClmpqykiQWXMn0qzwkhz7G4Gq9Df7ThG9NsN6z1o0-sNZ71npinXy3k8-ltXfeBR3Buw4S2tRo0Lb3_yT8AGPmiXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351571698</pqid></control><display><type>article</type><title>Predictive chiller operation: A data-driven loading and scheduling approach</title><source>Elsevier ScienceDirect Journals</source><source>Recercat</source><creator>Sala-Cardoso, Enric ; Delgado-Prieto, Miguel ; Kampouropoulos, Konstantinos ; Romeral, Luis</creator><creatorcontrib>Sala-Cardoso, Enric ; Delgado-Prieto, Miguel ; Kampouropoulos, Konstantinos ; Romeral, Luis</creatorcontrib><description>•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology.
The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2019.109639</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air conditioners ; Air conditioning ; Chiller scheduling ; Chillers ; Computer simulation ; Demand-side management ; Eficiència energètica ; Energia ; Energies ; Energy conservation ; Energy consumption ; Energy efficiency ; Estalvi ; HVAC equipment ; Installation ; Instrumentation ; Model-predictive control ; Multiple criterion ; Neural networks ; Operational performance ; Optimal chiller loading ; Power demand ; Predictive control ; Scheduling ; Àrees temàtiques de la UPC</subject><ispartof>Energy and buildings, 2020-02, Vol.208, p.109639, Article 109639</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Feb 1, 2020</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</citedby><cites>FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2019.109639$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,26953,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Sala-Cardoso, Enric</creatorcontrib><creatorcontrib>Delgado-Prieto, Miguel</creatorcontrib><creatorcontrib>Kampouropoulos, Konstantinos</creatorcontrib><creatorcontrib>Romeral, Luis</creatorcontrib><title>Predictive chiller operation: A data-driven loading and scheduling approach</title><title>Energy and buildings</title><description>•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology.
The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Chiller scheduling</subject><subject>Chillers</subject><subject>Computer simulation</subject><subject>Demand-side management</subject><subject>Eficiència energètica</subject><subject>Energia</subject><subject>Energies</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Estalvi</subject><subject>HVAC equipment</subject><subject>Installation</subject><subject>Instrumentation</subject><subject>Model-predictive control</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Operational performance</subject><subject>Optimal chiller loading</subject><subject>Power demand</subject><subject>Predictive control</subject><subject>Scheduling</subject><subject>Àrees temàtiques de la UPC</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkEtLxDAUhYMoOI7-BKHgumMebR5uZBh84YAudB3Sm9RJqe2YtAP-ezN2wKWLEM5NzuHcD6FLghcEE37dLFxXjb61C4qJSjPFmTpCMyIFzTkR8hjNMBMyF0LKU3QWY4Mx5qUgM_T8Gpz1MPidy2Dj29aFrN-6YAbfdzfZMrNmMLkN6b3L2t5Y331kprNZhI2zY_srt9vQG9ico5PatNFdHO45er-_e1s95uuXh6fVcp1DIdSQG1xjpQAklUVFgBHFsagKjsERAKsqK8vClEIahlmlaMWY4opR5ipiWM3YHJEpF-IIOjhwAcyge-P_xP5QLKhmXIrknaOryZOqfo0uDrrpx9ClmpqykiQWXMn0qzwkhz7G4Gq9Df7ThG9NsN6z1o0-sNZ71npinXy3k8-ltXfeBR3Buw4S2tRo0Lb3_yT8AGPmiXo</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Sala-Cardoso, Enric</creator><creator>Delgado-Prieto, Miguel</creator><creator>Kampouropoulos, Konstantinos</creator><creator>Romeral, Luis</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>XX2</scope></search><sort><creationdate>20200201</creationdate><title>Predictive chiller operation: A data-driven loading and scheduling approach</title><author>Sala-Cardoso, Enric ; Delgado-Prieto, Miguel ; Kampouropoulos, Konstantinos ; Romeral, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a0f099cc8284b1c319607b460ce1ccd9bd854a578a303b92b33969323eb1a3f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Chiller scheduling</topic><topic>Chillers</topic><topic>Computer simulation</topic><topic>Demand-side management</topic><topic>Eficiència energètica</topic><topic>Energia</topic><topic>Energies</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Estalvi</topic><topic>HVAC equipment</topic><topic>Installation</topic><topic>Instrumentation</topic><topic>Model-predictive control</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Operational performance</topic><topic>Optimal chiller loading</topic><topic>Power demand</topic><topic>Predictive control</topic><topic>Scheduling</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sala-Cardoso, Enric</creatorcontrib><creatorcontrib>Delgado-Prieto, Miguel</creatorcontrib><creatorcontrib>Kampouropoulos, Konstantinos</creatorcontrib><creatorcontrib>Romeral, Luis</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Recercat</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sala-Cardoso, Enric</au><au>Delgado-Prieto, Miguel</au><au>Kampouropoulos, Konstantinos</au><au>Romeral, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive chiller operation: A data-driven loading and scheduling approach</atitle><jtitle>Energy and buildings</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>208</volume><spage>109639</spage><pages>109639-</pages><artnum>109639</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>•A multi-objective model-predictive control strategy for chiller groups is developed.•Data-driven cooling demand forecasting and COP performance models are employed.•Taking advantage of the thermal dynamics allows to shift the cooling demand curve.•The strategy maximizes the overall COP of the chillers while limiting switching.•Validation results show a significant performance increase using this methodology.
The proper sequencing and optimal loading of chillers is one of the major avenues for energy efficiency improvement in existing heating, ventilating and air conditioning installations. The main enabler for the success of such applications is the access to accurate chiller performance maps that allow to operate the equipment in optimal conditions. However, current solutions are excessively reliant on maps obtained through suboptimal means, such as manufacturer datasheets, extensive instrumentation campaigns or burdensome modelling and simulation methodologies. Furthermore, recent studies show that strategies based on model-predictive control may lead to increased savings by anticipating the future cooling demand and scheduling the operation of the chillers, selecting the optimal operation configuration and extending the remaining life by reducing switching. In this regard, this study presents a novel data-driven and multi-criteria chiller orchestration strategy that combines a chiller performance characterization stage for obtaining performance maps based on a neural network-based learning methodology and a state-of-the-art hybrid load forecasting scheme for calculating the future load profiles. The effectiveness of the proposed methodology is tested with experimental data from a multi-chiller installation in a tertiary sector building, where nearly a 20% average performance increase is achieved compared to the standard real-time controller of the HVAC installation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2019.109639</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2020-02, Vol.208, p.109639, Article 109639 |
issn | 0378-7788 1872-6178 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_368732 |
source | Elsevier ScienceDirect Journals; Recercat |
subjects | Air conditioners Air conditioning Chiller scheduling Chillers Computer simulation Demand-side management Eficiència energètica Energia Energies Energy conservation Energy consumption Energy efficiency Estalvi HVAC equipment Installation Instrumentation Model-predictive control Multiple criterion Neural networks Operational performance Optimal chiller loading Power demand Predictive control Scheduling Àrees temàtiques de la UPC |
title | Predictive chiller operation: A data-driven loading and scheduling approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20chiller%20operation:%20A%20data-driven%20loading%20and%20scheduling%20approach&rft.jtitle=Energy%20and%20buildings&rft.au=Sala-Cardoso,%20Enric&rft.date=2020-02-01&rft.volume=208&rft.spage=109639&rft.pages=109639-&rft.artnum=109639&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2019.109639&rft_dat=%3Cproquest_csuc_%3E2351571698%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351571698&rft_id=info:pmid/&rft_els_id=S0378778819322327&rfr_iscdi=true |