Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor‐guided behavior in Xenopus tadpoles

Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2017-12, Vol.525 (17), p.3769-3783
Hauptverfasser: Terni, Beatrice, Pacciolla, Paolo, Masanas, Helena, Gorostiza, Pau, Llobet, Artur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3783
container_issue 17
container_start_page 3769
container_title Journal of comparative neurology (1911)
container_volume 525
creator Terni, Beatrice
Pacciolla, Paolo
Masanas, Helena
Gorostiza, Pau
Llobet, Artur
description Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory‐guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory‐guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well‐defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non‐compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age‐independent contribution of OSNs to the generation of odor maps. Olfactory sensory neurons are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb and undergo continuous turnover throughout life. In Xenopus tadpoles novel olfactory sensory neuron synapses contain well‐structured synaptic vesicle pools that allow the transfer information immediately after formation, mediating an olfactory‐guided behavior.
doi_str_mv 10.1002/cne.24303
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_367611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945437185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4303-9c0030031ed598edba911d6ca38756908e30b6a47d1f51cef22271c79b30ea943</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoO4uLOrB_-ABLzooXeTTn_lKMP6Act6WcFbSCfVPVnSSZukd5ibR4_-Rn_JZnZGBUGoUBT11EtVXoReUnJBCSkvlYOLsmKEPUErSnhT8K6hT9Eq92jBedOeorMY7wghnLPuGTotu47WdcdX6MetGTcJJ5hmH6TFyi-zNW7EPaQtgMNx5-ScjMIBtibsO37A3g5SJR92eLR-grBYg6XTOG0AQ65HcAoeQe3Dr-8_x8Vo0FlzI--ND9g4_BWcn5eIk9SztxCfo5NB2ggvjvkcfXl_dbv-WFx__vBp_e66UPsDC64IYTko6Jp3oHvJKdWNkqxr64aTDhjpG1m1mg41VTCUZdlS1fKeEZC8YueIHnRVXJQIoCAomYSX5m-xfyVpS8GatqE0z7w5zMzBf1sgJjGZqMBa6cAvUVDOSJW_vGQZff0PeueX4PJFmarqirW0qzP19rhE8DEGGMQczCTDTlAi9paKbKl4tDSzr46KSz-B_kP-9jADlwdgayzs_q8k1jdXB8kHcKas0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1945437185</pqid></control><display><type>article</type><title>Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor‐guided behavior in Xenopus tadpoles</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Recercat</source><creator>Terni, Beatrice ; Pacciolla, Paolo ; Masanas, Helena ; Gorostiza, Pau ; Llobet, Artur</creator><creatorcontrib>Terni, Beatrice ; Pacciolla, Paolo ; Masanas, Helena ; Gorostiza, Pau ; Llobet, Artur</creatorcontrib><description>Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory‐guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory‐guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well‐defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non‐compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age‐independent contribution of OSNs to the generation of odor maps. Olfactory sensory neurons are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb and undergo continuous turnover throughout life. In Xenopus tadpoles novel olfactory sensory neuron synapses contain well‐structured synaptic vesicle pools that allow the transfer information immediately after formation, mediating an olfactory‐guided behavior.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.24303</identifier><identifier>PMID: 28815589</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Age ; Age Factors ; Amino Acids - metabolism ; Animals ; Animals, Genetically Modified ; Calcium ; Chemoreceptors ; Depolarization ; Electrophysiology ; Evoked Potentials - physiology ; Fisiologia ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Larva ; Metabolism ; Metabolisme ; Microscopy, Electron ; Neural networks ; Odor ; Odorants ; Olfacte ; Olfactory bulb ; Olfactory Bulb - metabolism ; Olfactory glomeruli ; Olfactory nerve ; Olfactory Nerve Injuries - physiopathology ; Olfactory pathways ; Olfactory receptor neurons ; Olfactory Receptor Neurons - physiology ; Olfactory Receptor Neurons - ultrastructure ; Physiology ; presynaptic terminals ; Recovery of Function - physiology ; RRID: AB‐221570 ; RRID: AB‐887824 ; RRID:SCR_007164 ; RRID:SCR_013731 ; Sensory evaluation ; Sensory neurons ; Sinapsi ; Smell ; Swimming - physiology ; Synapses ; Synapses - metabolism ; Synapses - ultrastructure ; synaptic vesicles ; Synaptogenesis ; Synaptophysin - metabolism ; Time Factors ; Tubulin - genetics ; Tubulin - metabolism ; Xenopus ; Xenopus laevis - physiology</subject><ispartof>Journal of comparative neurology (1911), 2017-12, Vol.525 (17), p.3769-3783</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>(c) Wiley, 2017 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4303-9c0030031ed598edba911d6ca38756908e30b6a47d1f51cef22271c79b30ea943</citedby><cites>FETCH-LOGICAL-c4303-9c0030031ed598edba911d6ca38756908e30b6a47d1f51cef22271c79b30ea943</cites><orcidid>0000-0002-7268-5577 ; 0000-0001-5797-6782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.24303$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.24303$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,26974,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28815589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terni, Beatrice</creatorcontrib><creatorcontrib>Pacciolla, Paolo</creatorcontrib><creatorcontrib>Masanas, Helena</creatorcontrib><creatorcontrib>Gorostiza, Pau</creatorcontrib><creatorcontrib>Llobet, Artur</creatorcontrib><title>Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor‐guided behavior in Xenopus tadpoles</title><title>Journal of comparative neurology (1911)</title><addtitle>J Comp Neurol</addtitle><description>Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory‐guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory‐guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well‐defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non‐compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age‐independent contribution of OSNs to the generation of odor maps. Olfactory sensory neurons are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb and undergo continuous turnover throughout life. In Xenopus tadpoles novel olfactory sensory neuron synapses contain well‐structured synaptic vesicle pools that allow the transfer information immediately after formation, mediating an olfactory‐guided behavior.</description><subject>Age</subject><subject>Age Factors</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Calcium</subject><subject>Chemoreceptors</subject><subject>Depolarization</subject><subject>Electrophysiology</subject><subject>Evoked Potentials - physiology</subject><subject>Fisiologia</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Larva</subject><subject>Metabolism</subject><subject>Metabolisme</subject><subject>Microscopy, Electron</subject><subject>Neural networks</subject><subject>Odor</subject><subject>Odorants</subject><subject>Olfacte</subject><subject>Olfactory bulb</subject><subject>Olfactory Bulb - metabolism</subject><subject>Olfactory glomeruli</subject><subject>Olfactory nerve</subject><subject>Olfactory Nerve Injuries - physiopathology</subject><subject>Olfactory pathways</subject><subject>Olfactory receptor neurons</subject><subject>Olfactory Receptor Neurons - physiology</subject><subject>Olfactory Receptor Neurons - ultrastructure</subject><subject>Physiology</subject><subject>presynaptic terminals</subject><subject>Recovery of Function - physiology</subject><subject>RRID: AB‐221570</subject><subject>RRID: AB‐887824</subject><subject>RRID:SCR_007164</subject><subject>RRID:SCR_013731</subject><subject>Sensory evaluation</subject><subject>Sensory neurons</subject><subject>Sinapsi</subject><subject>Smell</subject><subject>Swimming - physiology</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>synaptic vesicles</subject><subject>Synaptogenesis</subject><subject>Synaptophysin - metabolism</subject><subject>Time Factors</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><subject>Xenopus</subject><subject>Xenopus laevis - physiology</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNp1kU2LFDEQhoO4uLOrB_-ABLzooXeTTn_lKMP6Act6WcFbSCfVPVnSSZukd5ibR4_-Rn_JZnZGBUGoUBT11EtVXoReUnJBCSkvlYOLsmKEPUErSnhT8K6hT9Eq92jBedOeorMY7wghnLPuGTotu47WdcdX6MetGTcJJ5hmH6TFyi-zNW7EPaQtgMNx5-ScjMIBtibsO37A3g5SJR92eLR-grBYg6XTOG0AQ65HcAoeQe3Dr-8_x8Vo0FlzI--ND9g4_BWcn5eIk9SztxCfo5NB2ggvjvkcfXl_dbv-WFx__vBp_e66UPsDC64IYTko6Jp3oHvJKdWNkqxr64aTDhjpG1m1mg41VTCUZdlS1fKeEZC8YueIHnRVXJQIoCAomYSX5m-xfyVpS8GatqE0z7w5zMzBf1sgJjGZqMBa6cAvUVDOSJW_vGQZff0PeueX4PJFmarqirW0qzP19rhE8DEGGMQczCTDTlAi9paKbKl4tDSzr46KSz-B_kP-9jADlwdgayzs_q8k1jdXB8kHcKas0w</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Terni, Beatrice</creator><creator>Pacciolla, Paolo</creator><creator>Masanas, Helena</creator><creator>Gorostiza, Pau</creator><creator>Llobet, Artur</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-7268-5577</orcidid><orcidid>https://orcid.org/0000-0001-5797-6782</orcidid></search><sort><creationdate>20171201</creationdate><title>Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor‐guided behavior in Xenopus tadpoles</title><author>Terni, Beatrice ; Pacciolla, Paolo ; Masanas, Helena ; Gorostiza, Pau ; Llobet, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4303-9c0030031ed598edba911d6ca38756908e30b6a47d1f51cef22271c79b30ea943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Age Factors</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Calcium</topic><topic>Chemoreceptors</topic><topic>Depolarization</topic><topic>Electrophysiology</topic><topic>Evoked Potentials - physiology</topic><topic>Fisiologia</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Larva</topic><topic>Metabolism</topic><topic>Metabolisme</topic><topic>Microscopy, Electron</topic><topic>Neural networks</topic><topic>Odor</topic><topic>Odorants</topic><topic>Olfacte</topic><topic>Olfactory bulb</topic><topic>Olfactory Bulb - metabolism</topic><topic>Olfactory glomeruli</topic><topic>Olfactory nerve</topic><topic>Olfactory Nerve Injuries - physiopathology</topic><topic>Olfactory pathways</topic><topic>Olfactory receptor neurons</topic><topic>Olfactory Receptor Neurons - physiology</topic><topic>Olfactory Receptor Neurons - ultrastructure</topic><topic>Physiology</topic><topic>presynaptic terminals</topic><topic>Recovery of Function - physiology</topic><topic>RRID: AB‐221570</topic><topic>RRID: AB‐887824</topic><topic>RRID:SCR_007164</topic><topic>RRID:SCR_013731</topic><topic>Sensory evaluation</topic><topic>Sensory neurons</topic><topic>Sinapsi</topic><topic>Smell</topic><topic>Swimming - physiology</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>synaptic vesicles</topic><topic>Synaptogenesis</topic><topic>Synaptophysin - metabolism</topic><topic>Time Factors</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><topic>Xenopus</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terni, Beatrice</creatorcontrib><creatorcontrib>Pacciolla, Paolo</creatorcontrib><creatorcontrib>Masanas, Helena</creatorcontrib><creatorcontrib>Gorostiza, Pau</creatorcontrib><creatorcontrib>Llobet, Artur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terni, Beatrice</au><au>Pacciolla, Paolo</au><au>Masanas, Helena</au><au>Gorostiza, Pau</au><au>Llobet, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor‐guided behavior in Xenopus tadpoles</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J Comp Neurol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>525</volume><issue>17</issue><spage>3769</spage><epage>3783</epage><pages>3769-3783</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory‐guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory‐guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well‐defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non‐compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age‐independent contribution of OSNs to the generation of odor maps. Olfactory sensory neurons are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb and undergo continuous turnover throughout life. In Xenopus tadpoles novel olfactory sensory neuron synapses contain well‐structured synaptic vesicle pools that allow the transfer information immediately after formation, mediating an olfactory‐guided behavior.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28815589</pmid><doi>10.1002/cne.24303</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7268-5577</orcidid><orcidid>https://orcid.org/0000-0001-5797-6782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2017-12, Vol.525 (17), p.3769-3783
issn 0021-9967
1096-9861
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_367611
source MEDLINE; Access via Wiley Online Library; Recercat
subjects Age
Age Factors
Amino Acids - metabolism
Animals
Animals, Genetically Modified
Calcium
Chemoreceptors
Depolarization
Electrophysiology
Evoked Potentials - physiology
Fisiologia
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Larva
Metabolism
Metabolisme
Microscopy, Electron
Neural networks
Odor
Odorants
Olfacte
Olfactory bulb
Olfactory Bulb - metabolism
Olfactory glomeruli
Olfactory nerve
Olfactory Nerve Injuries - physiopathology
Olfactory pathways
Olfactory receptor neurons
Olfactory Receptor Neurons - physiology
Olfactory Receptor Neurons - ultrastructure
Physiology
presynaptic terminals
Recovery of Function - physiology
RRID: AB‐221570
RRID: AB‐887824
RRID:SCR_007164
RRID:SCR_013731
Sensory evaluation
Sensory neurons
Sinapsi
Smell
Swimming - physiology
Synapses
Synapses - metabolism
Synapses - ultrastructure
synaptic vesicles
Synaptogenesis
Synaptophysin - metabolism
Time Factors
Tubulin - genetics
Tubulin - metabolism
Xenopus
Xenopus laevis - physiology
title Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor‐guided behavior in Xenopus tadpoles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20temporal%20coupling%20between%20synaptic%20rewiring%20of%20olfactory%20glomeruli%20and%20the%20emergence%20of%20odor%E2%80%90guided%20behavior%20in%20Xenopus%20tadpoles&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Terni,%20Beatrice&rft.date=2017-12-01&rft.volume=525&rft.issue=17&rft.spage=3769&rft.epage=3783&rft.pages=3769-3783&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.24303&rft_dat=%3Cproquest_csuc_%3E1945437185%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1945437185&rft_id=info:pmid/28815589&rfr_iscdi=true