CGPA: Coarse-Grained Pruning of Activations for Energy-Efficient RNN Inference
Recurrent neural networks (RNNs) perform element-wise multiplications across the activations of gates. We show that a significant percentage of activations are saturated and propose coarse-grained pruning of activations (CGPA) to avoid the computation of entire neurons, based on the activation value...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2019-09, Vol.39 (5), p.36-45 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!