CGPA: Coarse-Grained Pruning of Activations for Energy-Efficient RNN Inference
Recurrent neural networks (RNNs) perform element-wise multiplications across the activations of gates. We show that a significant percentage of activations are saturated and propose coarse-grained pruning of activations (CGPA) to avoid the computation of entire neurons, based on the activation value...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2019-09, Vol.39 (5), p.36-45 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recurrent neural networks (RNNs) perform element-wise multiplications across the activations of gates. We show that a significant percentage of activations are saturated and propose coarse-grained pruning of activations (CGPA) to avoid the computation of entire neurons, based on the activation values of the gates. We show that CGPA can be easily implemented on top of a TPU-like architecture with negligible area overhead, resulting in 12% speedup and 12% energy savings on average for a set of widely used RNNs. |
---|---|
ISSN: | 0272-1732 1937-4143 |
DOI: | 10.1109/MM.2019.2929742 |