Moore–Gibson–Thompson thermoelasticity
We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimen...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2019-12, Vol.24 (12), p.4020-4031 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4031 |
---|---|
container_issue | 12 |
container_start_page | 4020 |
container_title | Mathematics and mechanics of solids |
container_volume | 24 |
creator | Quintanilla, Ramón |
description | We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories. |
doi_str_mv | 10.1177/1081286519862007 |
format | Article |
fullrecord | <record><control><sourceid>sage_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_362841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286519862007</sage_id><sourcerecordid>10.1177_1081286519862007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j56F1Zlks0mOUrQKFS_1HLLprN3SbUqyPfTmO_iGPolZWhAED8P8wz_fwPyMXSPcISp1j6CR60qi0RUHUCdshKrEQgDXp1lnuxj8c3aR0goAuFRixG5fQ4j0_fk1besUNlnMl6HbZnnTLyl2gdYu9a1v-_0lO2vcOtHVsY_Z-9PjfPJczN6mL5OHWeFLgX1RGaU4OckrUSoQABWBdA3xWgolGmWEL400CxCkF6aUvCaDznOtXF07AjFmeLjr087bSJ6id70Nrv0dhuKguBUV1yVmBo5MDClFauw2tp2Le4tgh3zs33wyUhyQ5D7IrsIubvJX_-__AEkuZYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moore–Gibson–Thompson thermoelasticity</title><source>Recercat</source><source>SAGE Journals</source><creator>Quintanilla, Ramón</creator><creatorcontrib>Quintanilla, Ramón</creatorcontrib><description>We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286519862007</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>35 Partial differential equations ; 74 Mechanics of deformable solids ; Classificació AMS ; Existence ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Moore–Gibson–Thompson equation ; Relaxation parameter ; Stability ; Termoelasticitat ; Thermoelasticity ; Àrees temàtiques de la UPC</subject><ispartof>Mathematics and mechanics of solids, 2019-12, Vol.24 (12), p.4020-4031</ispartof><rights>The Author(s) 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</citedby><cites>FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</cites><orcidid>0000-0001-7059-7058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1081286519862007$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1081286519862007$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,26951,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Quintanilla, Ramón</creatorcontrib><title>Moore–Gibson–Thompson thermoelasticity</title><title>Mathematics and mechanics of solids</title><description>We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories.</description><subject>35 Partial differential equations</subject><subject>74 Mechanics of deformable solids</subject><subject>Classificació AMS</subject><subject>Existence</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Moore–Gibson–Thompson equation</subject><subject>Relaxation parameter</subject><subject>Stability</subject><subject>Termoelasticitat</subject><subject>Thermoelasticity</subject><subject>Àrees temàtiques de la UPC</subject><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp1kMFKAzEQhoMoWKt3j56F1Zlks0mOUrQKFS_1HLLprN3SbUqyPfTmO_iGPolZWhAED8P8wz_fwPyMXSPcISp1j6CR60qi0RUHUCdshKrEQgDXp1lnuxj8c3aR0goAuFRixG5fQ4j0_fk1besUNlnMl6HbZnnTLyl2gdYu9a1v-_0lO2vcOtHVsY_Z-9PjfPJczN6mL5OHWeFLgX1RGaU4OckrUSoQABWBdA3xWgolGmWEL400CxCkF6aUvCaDznOtXF07AjFmeLjr087bSJ6id70Nrv0dhuKguBUV1yVmBo5MDClFauw2tp2Le4tgh3zs33wyUhyQ5D7IrsIubvJX_-__AEkuZYY</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Quintanilla, Ramón</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid></search><sort><creationdate>20191201</creationdate><title>Moore–Gibson–Thompson thermoelasticity</title><author>Quintanilla, Ramón</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35 Partial differential equations</topic><topic>74 Mechanics of deformable solids</topic><topic>Classificació AMS</topic><topic>Existence</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Moore–Gibson–Thompson equation</topic><topic>Relaxation parameter</topic><topic>Stability</topic><topic>Termoelasticitat</topic><topic>Thermoelasticity</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintanilla, Ramón</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintanilla, Ramón</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moore–Gibson–Thompson thermoelasticity</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>24</volume><issue>12</issue><spage>4020</spage><epage>4031</epage><pages>4020-4031</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286519862007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1081-2865 |
ispartof | Mathematics and mechanics of solids, 2019-12, Vol.24 (12), p.4020-4031 |
issn | 1081-2865 1741-3028 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_362841 |
source | Recercat; SAGE Journals |
subjects | 35 Partial differential equations 74 Mechanics of deformable solids Classificació AMS Existence Matemàtica aplicada a les ciències Matemàtiques i estadística Moore–Gibson–Thompson equation Relaxation parameter Stability Termoelasticitat Thermoelasticity Àrees temàtiques de la UPC |
title | Moore–Gibson–Thompson thermoelasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moore%E2%80%93Gibson%E2%80%93Thompson%20thermoelasticity&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Quintanilla,%20Ram%C3%B3n&rft.date=2019-12-01&rft.volume=24&rft.issue=12&rft.spage=4020&rft.epage=4031&rft.pages=4020-4031&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286519862007&rft_dat=%3Csage_csuc_%3E10.1177_1081286519862007%3C/sage_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286519862007&rfr_iscdi=true |