Moore–Gibson–Thompson thermoelasticity

We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2019-12, Vol.24 (12), p.4020-4031
1. Verfasser: Quintanilla, Ramón
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4031
container_issue 12
container_start_page 4020
container_title Mathematics and mechanics of solids
container_volume 24
creator Quintanilla, Ramón
description We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories.
doi_str_mv 10.1177/1081286519862007
format Article
fullrecord <record><control><sourceid>sage_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_362841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286519862007</sage_id><sourcerecordid>10.1177_1081286519862007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j56F1Zlks0mOUrQKFS_1HLLprN3SbUqyPfTmO_iGPolZWhAED8P8wz_fwPyMXSPcISp1j6CR60qi0RUHUCdshKrEQgDXp1lnuxj8c3aR0goAuFRixG5fQ4j0_fk1besUNlnMl6HbZnnTLyl2gdYu9a1v-_0lO2vcOtHVsY_Z-9PjfPJczN6mL5OHWeFLgX1RGaU4OckrUSoQABWBdA3xWgolGmWEL400CxCkF6aUvCaDznOtXF07AjFmeLjr087bSJ6id70Nrv0dhuKguBUV1yVmBo5MDClFauw2tp2Le4tgh3zs33wyUhyQ5D7IrsIubvJX_-__AEkuZYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moore–Gibson–Thompson thermoelasticity</title><source>Recercat</source><source>SAGE Journals</source><creator>Quintanilla, Ramón</creator><creatorcontrib>Quintanilla, Ramón</creatorcontrib><description>We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286519862007</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>35 Partial differential equations ; 74 Mechanics of deformable solids ; Classificació AMS ; Existence ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Moore–Gibson–Thompson equation ; Relaxation parameter ; Stability ; Termoelasticitat ; Thermoelasticity ; Àrees temàtiques de la UPC</subject><ispartof>Mathematics and mechanics of solids, 2019-12, Vol.24 (12), p.4020-4031</ispartof><rights>The Author(s) 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</citedby><cites>FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</cites><orcidid>0000-0001-7059-7058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1081286519862007$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1081286519862007$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,26951,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Quintanilla, Ramón</creatorcontrib><title>Moore–Gibson–Thompson thermoelasticity</title><title>Mathematics and mechanics of solids</title><description>We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories.</description><subject>35 Partial differential equations</subject><subject>74 Mechanics of deformable solids</subject><subject>Classificació AMS</subject><subject>Existence</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Moore–Gibson–Thompson equation</subject><subject>Relaxation parameter</subject><subject>Stability</subject><subject>Termoelasticitat</subject><subject>Thermoelasticity</subject><subject>Àrees temàtiques de la UPC</subject><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp1kMFKAzEQhoMoWKt3j56F1Zlks0mOUrQKFS_1HLLprN3SbUqyPfTmO_iGPolZWhAED8P8wz_fwPyMXSPcISp1j6CR60qi0RUHUCdshKrEQgDXp1lnuxj8c3aR0goAuFRixG5fQ4j0_fk1besUNlnMl6HbZnnTLyl2gdYu9a1v-_0lO2vcOtHVsY_Z-9PjfPJczN6mL5OHWeFLgX1RGaU4OckrUSoQABWBdA3xWgolGmWEL400CxCkF6aUvCaDznOtXF07AjFmeLjr087bSJ6id70Nrv0dhuKguBUV1yVmBo5MDClFauw2tp2Le4tgh3zs33wyUhyQ5D7IrsIubvJX_-__AEkuZYY</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Quintanilla, Ramón</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid></search><sort><creationdate>20191201</creationdate><title>Moore–Gibson–Thompson thermoelasticity</title><author>Quintanilla, Ramón</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-69772ea52634703006e05afe2b5373f793c4959d03e8d9452be91ac287abbae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35 Partial differential equations</topic><topic>74 Mechanics of deformable solids</topic><topic>Classificació AMS</topic><topic>Existence</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Moore–Gibson–Thompson equation</topic><topic>Relaxation parameter</topic><topic>Stability</topic><topic>Termoelasticitat</topic><topic>Thermoelasticity</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintanilla, Ramón</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintanilla, Ramón</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moore–Gibson–Thompson thermoelasticity</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>24</volume><issue>12</issue><spage>4020</spage><epage>4031</epage><pages>4020-4031</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>We consider a thermoelastic theory where the heat conduction is described by the Moore–Gibson–Thompson equation. In fact, this equation can be obtained after the introduction of a relaxation parameter in the Green–Naghdi type III model. We analyse the one- and three-dimensional cases. In three dimensions, we obtain the well-posedness and the stability of solutions. In one dimension, we obtain the exponential decay and the instability of the solutions depending on the conditions over the system of constitutive parameters. We also propose possible extensions for these theories.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286519862007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2019-12, Vol.24 (12), p.4020-4031
issn 1081-2865
1741-3028
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_362841
source Recercat; SAGE Journals
subjects 35 Partial differential equations
74 Mechanics of deformable solids
Classificació AMS
Existence
Matemàtica aplicada a les ciències
Matemàtiques i estadística
Moore–Gibson–Thompson equation
Relaxation parameter
Stability
Termoelasticitat
Thermoelasticity
Àrees temàtiques de la UPC
title Moore–Gibson–Thompson thermoelasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moore%E2%80%93Gibson%E2%80%93Thompson%20thermoelasticity&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Quintanilla,%20Ram%C3%B3n&rft.date=2019-12-01&rft.volume=24&rft.issue=12&rft.spage=4020&rft.epage=4031&rft.pages=4020-4031&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286519862007&rft_dat=%3Csage_csuc_%3E10.1177_1081286519862007%3C/sage_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286519862007&rfr_iscdi=true