Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities

[Display omitted] •CuBTC, Mg-MOF-74 and 13X were evaluated for CO2 swing adsorption capture processes.•First MOFs CO2 capture adsorption process design for flue gas with impurities.•There is an impact of coexisting impurities on equilibrium and exergetic results.•Mg-MOF-74 beats 13X for working capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2018-06, Vol.342, p.458-473
Hauptverfasser: Bahamon, Daniel, Díaz-Márquez, Alejandro, Gamallo, Pablo, Vega, Lourdes F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 473
container_issue
container_start_page 458
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 342
creator Bahamon, Daniel
Díaz-Márquez, Alejandro
Gamallo, Pablo
Vega, Lourdes F.
description [Display omitted] •CuBTC, Mg-MOF-74 and 13X were evaluated for CO2 swing adsorption capture processes.•First MOFs CO2 capture adsorption process design for flue gas with impurities.•There is an impact of coexisting impurities on equilibrium and exergetic results.•Mg-MOF-74 beats 13X for working capacities, energy consumptions and efficiencies.•Mg-MOF-74: exergetic consumption 95% & recoveries >90%. We present a systematic computational study of Mg-MOF-74, CuBTC and zeolite 13X for CO2 separation from multi-component flue gas mixtures. The impurities’ impact was evaluated at the molecular level and process conditions. Adsorption isotherms and isosteric heats of adsorption of pure (CO2, N2, O2, H2O, SO2 and NO2) components, binary and ternary mixtures were obtained from Grand Canonical Monte Carlo simulations. Working capacities, purities, recoveries and exergetic performances were evaluated for VSA/PSA/TSA processes. Results show that NO2 has a negligible effect in the studied range. For H2O and SO2 the energy requirements are reduced as the impurity content increases and recovery and purity increase, up to an “optimal” point where a competition for CO2 preferred adsorption sites produces a sharp drop in purity and the energetic index grows exponentially. The minimum energy requirement were obtained for TSA at a desorbing temperature of 443 K in the three materials, with impurities of 1% H2O for CuBTC, 0.5% H2O for Mg-MOF-74 and 0.02% H2O for 13X, obtaining values of 1.13, 0.55 and 0.58 GJ/tCO2, respectively. Hybrid VTSA processes with impurities content in the feed mixture and CCS specifications achieve energy performances of 0.36 GJ/tCO2 and 0.46 GJ/tCO2 with Mg-MOF-74 and 13X, respectively. Mg-MOF-74 stands up as an attractive material for VTSA processes, presenting higher working capacities, purities and second-law efficiencies, with lower energy consumptions, also showing a better “buffer” behavior than zeolite 13X when trace impurities are present. This work represents the first quantitative assessment of the process performance of MOFs adsorbents in swing adsorption process for CO2 capture considering impurities effects. Results reinforce the validity of molecular simulations for guiding the optimization of these processes.
doi_str_mv 10.1016/j.cej.2018.02.094
format Article
fullrecord <record><control><sourceid>csuc_elsev</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_362720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894718303073</els_id><sourcerecordid>oai_recercat_cat_2072_362720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-ea2feaf5e82cd589509ed74821e6bad959a6c605f2f510c0c732aeef313dba313</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKc_wLv8gdZ8rG2iVzI2FSa70euQJScjpTYlSSf4621V8OJ8874cHoRuKSkpofVdWxpoS0aoKAkriVydoQUVDS84o-x86rmoCiFXzSW6SqklhNSSygU6bXqIR8jeYDjpbtTZhx4Hh9On749Y2xTi8LMbYjCQEiTsQsTrPcNGD3mMgH2PE3RgMlj8ut8mrHuLvyB0PkO6xxvnptvs6T-GMfrsIV2jC6e7BDd_dYnet5u39XOx2z-9rB93hWGizgVo5kC7CgQzthKyIhJssxKMQn3QVlZS16YmlWOuosQQ03CmARyn3B70lJeI_vqaNBoVwUA0Oqug_f8wByMNU7xmDSOT5uFXA9NjJw9RJeOhN2D9pMnKBq8oUTN21aoJu5qxK8LUhJ1_A6E3eag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><creator>Bahamon, Daniel ; Díaz-Márquez, Alejandro ; Gamallo, Pablo ; Vega, Lourdes F.</creator><creatorcontrib>Bahamon, Daniel ; Díaz-Márquez, Alejandro ; Gamallo, Pablo ; Vega, Lourdes F.</creatorcontrib><description>[Display omitted] •CuBTC, Mg-MOF-74 and 13X were evaluated for CO2 swing adsorption capture processes.•First MOFs CO2 capture adsorption process design for flue gas with impurities.•There is an impact of coexisting impurities on equilibrium and exergetic results.•Mg-MOF-74 beats 13X for working capacities, energy consumptions and efficiencies.•Mg-MOF-74: exergetic consumption &lt;0.4 GJ/tCO2, for purities &gt;95% &amp; recoveries &gt;90%. We present a systematic computational study of Mg-MOF-74, CuBTC and zeolite 13X for CO2 separation from multi-component flue gas mixtures. The impurities’ impact was evaluated at the molecular level and process conditions. Adsorption isotherms and isosteric heats of adsorption of pure (CO2, N2, O2, H2O, SO2 and NO2) components, binary and ternary mixtures were obtained from Grand Canonical Monte Carlo simulations. Working capacities, purities, recoveries and exergetic performances were evaluated for VSA/PSA/TSA processes. Results show that NO2 has a negligible effect in the studied range. For H2O and SO2 the energy requirements are reduced as the impurity content increases and recovery and purity increase, up to an “optimal” point where a competition for CO2 preferred adsorption sites produces a sharp drop in purity and the energetic index grows exponentially. The minimum energy requirement were obtained for TSA at a desorbing temperature of 443 K in the three materials, with impurities of 1% H2O for CuBTC, 0.5% H2O for Mg-MOF-74 and 0.02% H2O for 13X, obtaining values of 1.13, 0.55 and 0.58 GJ/tCO2, respectively. Hybrid VTSA processes with impurities content in the feed mixture and CCS specifications achieve energy performances of 0.36 GJ/tCO2 and 0.46 GJ/tCO2 with Mg-MOF-74 and 13X, respectively. Mg-MOF-74 stands up as an attractive material for VTSA processes, presenting higher working capacities, purities and second-law efficiencies, with lower energy consumptions, also showing a better “buffer” behavior than zeolite 13X when trace impurities are present. This work represents the first quantitative assessment of the process performance of MOFs adsorbents in swing adsorption process for CO2 capture considering impurities effects. Results reinforce the validity of molecular simulations for guiding the optimization of these processes.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2018.02.094</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Captura i emmagatzematge de diòxid de carboni ; Carbon sequestration ; Impurities ; Mg-MOF-74 and CuBTC ; Monte Carlo method ; Monte Carlo simulation ; Mètode de Montecarlo ; Post-combustion CO2 capture ; Swing adsorption processes ; Zeolite ; Zeolites</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2018-06, Vol.342, p.458-473</ispartof><rights>2018 Elsevier B.V.</rights><rights>cc-by-nc-nd (c) Elsevier B.V., 2018 info:eu-repo/semantics/embargoedAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7609-4184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1385894718303073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bahamon, Daniel</creatorcontrib><creatorcontrib>Díaz-Márquez, Alejandro</creatorcontrib><creatorcontrib>Gamallo, Pablo</creatorcontrib><creatorcontrib>Vega, Lourdes F.</creatorcontrib><title>Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •CuBTC, Mg-MOF-74 and 13X were evaluated for CO2 swing adsorption capture processes.•First MOFs CO2 capture adsorption process design for flue gas with impurities.•There is an impact of coexisting impurities on equilibrium and exergetic results.•Mg-MOF-74 beats 13X for working capacities, energy consumptions and efficiencies.•Mg-MOF-74: exergetic consumption &lt;0.4 GJ/tCO2, for purities &gt;95% &amp; recoveries &gt;90%. We present a systematic computational study of Mg-MOF-74, CuBTC and zeolite 13X for CO2 separation from multi-component flue gas mixtures. The impurities’ impact was evaluated at the molecular level and process conditions. Adsorption isotherms and isosteric heats of adsorption of pure (CO2, N2, O2, H2O, SO2 and NO2) components, binary and ternary mixtures were obtained from Grand Canonical Monte Carlo simulations. Working capacities, purities, recoveries and exergetic performances were evaluated for VSA/PSA/TSA processes. Results show that NO2 has a negligible effect in the studied range. For H2O and SO2 the energy requirements are reduced as the impurity content increases and recovery and purity increase, up to an “optimal” point where a competition for CO2 preferred adsorption sites produces a sharp drop in purity and the energetic index grows exponentially. The minimum energy requirement were obtained for TSA at a desorbing temperature of 443 K in the three materials, with impurities of 1% H2O for CuBTC, 0.5% H2O for Mg-MOF-74 and 0.02% H2O for 13X, obtaining values of 1.13, 0.55 and 0.58 GJ/tCO2, respectively. Hybrid VTSA processes with impurities content in the feed mixture and CCS specifications achieve energy performances of 0.36 GJ/tCO2 and 0.46 GJ/tCO2 with Mg-MOF-74 and 13X, respectively. Mg-MOF-74 stands up as an attractive material for VTSA processes, presenting higher working capacities, purities and second-law efficiencies, with lower energy consumptions, also showing a better “buffer” behavior than zeolite 13X when trace impurities are present. This work represents the first quantitative assessment of the process performance of MOFs adsorbents in swing adsorption process for CO2 capture considering impurities effects. Results reinforce the validity of molecular simulations for guiding the optimization of these processes.</description><subject>Captura i emmagatzematge de diòxid de carboni</subject><subject>Carbon sequestration</subject><subject>Impurities</subject><subject>Mg-MOF-74 and CuBTC</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Mètode de Montecarlo</subject><subject>Post-combustion CO2 capture</subject><subject>Swing adsorption processes</subject><subject>Zeolite</subject><subject>Zeolites</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpFkF1LwzAUhoMoOKc_wLv8gdZ8rG2iVzI2FSa70euQJScjpTYlSSf4621V8OJ8874cHoRuKSkpofVdWxpoS0aoKAkriVydoQUVDS84o-x86rmoCiFXzSW6SqklhNSSygU6bXqIR8jeYDjpbtTZhx4Hh9On749Y2xTi8LMbYjCQEiTsQsTrPcNGD3mMgH2PE3RgMlj8ut8mrHuLvyB0PkO6xxvnptvs6T-GMfrsIV2jC6e7BDd_dYnet5u39XOx2z-9rB93hWGizgVo5kC7CgQzthKyIhJssxKMQn3QVlZS16YmlWOuosQQ03CmARyn3B70lJeI_vqaNBoVwUA0Oqug_f8wByMNU7xmDSOT5uFXA9NjJw9RJeOhN2D9pMnKBq8oUTN21aoJu5qxK8LUhJ1_A6E3eag</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Bahamon, Daniel</creator><creator>Díaz-Márquez, Alejandro</creator><creator>Gamallo, Pablo</creator><creator>Vega, Lourdes F.</creator><general>Elsevier B.V</general><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-7609-4184</orcidid></search><sort><creationdate>20180615</creationdate><title>Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities</title><author>Bahamon, Daniel ; Díaz-Márquez, Alejandro ; Gamallo, Pablo ; Vega, Lourdes F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-ea2feaf5e82cd589509ed74821e6bad959a6c605f2f510c0c732aeef313dba313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Captura i emmagatzematge de diòxid de carboni</topic><topic>Carbon sequestration</topic><topic>Impurities</topic><topic>Mg-MOF-74 and CuBTC</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Mètode de Montecarlo</topic><topic>Post-combustion CO2 capture</topic><topic>Swing adsorption processes</topic><topic>Zeolite</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahamon, Daniel</creatorcontrib><creatorcontrib>Díaz-Márquez, Alejandro</creatorcontrib><creatorcontrib>Gamallo, Pablo</creatorcontrib><creatorcontrib>Vega, Lourdes F.</creatorcontrib><collection>Recercat</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahamon, Daniel</au><au>Díaz-Márquez, Alejandro</au><au>Gamallo, Pablo</au><au>Vega, Lourdes F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>342</volume><spage>458</spage><epage>473</epage><pages>458-473</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] •CuBTC, Mg-MOF-74 and 13X were evaluated for CO2 swing adsorption capture processes.•First MOFs CO2 capture adsorption process design for flue gas with impurities.•There is an impact of coexisting impurities on equilibrium and exergetic results.•Mg-MOF-74 beats 13X for working capacities, energy consumptions and efficiencies.•Mg-MOF-74: exergetic consumption &lt;0.4 GJ/tCO2, for purities &gt;95% &amp; recoveries &gt;90%. We present a systematic computational study of Mg-MOF-74, CuBTC and zeolite 13X for CO2 separation from multi-component flue gas mixtures. The impurities’ impact was evaluated at the molecular level and process conditions. Adsorption isotherms and isosteric heats of adsorption of pure (CO2, N2, O2, H2O, SO2 and NO2) components, binary and ternary mixtures were obtained from Grand Canonical Monte Carlo simulations. Working capacities, purities, recoveries and exergetic performances were evaluated for VSA/PSA/TSA processes. Results show that NO2 has a negligible effect in the studied range. For H2O and SO2 the energy requirements are reduced as the impurity content increases and recovery and purity increase, up to an “optimal” point where a competition for CO2 preferred adsorption sites produces a sharp drop in purity and the energetic index grows exponentially. The minimum energy requirement were obtained for TSA at a desorbing temperature of 443 K in the three materials, with impurities of 1% H2O for CuBTC, 0.5% H2O for Mg-MOF-74 and 0.02% H2O for 13X, obtaining values of 1.13, 0.55 and 0.58 GJ/tCO2, respectively. Hybrid VTSA processes with impurities content in the feed mixture and CCS specifications achieve energy performances of 0.36 GJ/tCO2 and 0.46 GJ/tCO2 with Mg-MOF-74 and 13X, respectively. Mg-MOF-74 stands up as an attractive material for VTSA processes, presenting higher working capacities, purities and second-law efficiencies, with lower energy consumptions, also showing a better “buffer” behavior than zeolite 13X when trace impurities are present. This work represents the first quantitative assessment of the process performance of MOFs adsorbents in swing adsorption process for CO2 capture considering impurities effects. Results reinforce the validity of molecular simulations for guiding the optimization of these processes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2018.02.094</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7609-4184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2018-06, Vol.342, p.458-473
issn 1385-8947
1873-3212
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_362720
source Elsevier ScienceDirect Journals Complete; Recercat
subjects Captura i emmagatzematge de diòxid de carboni
Carbon sequestration
Impurities
Mg-MOF-74 and CuBTC
Monte Carlo method
Monte Carlo simulation
Mètode de Montecarlo
Post-combustion CO2 capture
Swing adsorption processes
Zeolite
Zeolites
title Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20evaluation%20of%20swing%20adsorption%20processes%20for%20CO2%20capture%20in%20selected%20MOFs%20and%20zeolites:%20Effect%20of%20impurities&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Bahamon,%20Daniel&rft.date=2018-06-15&rft.volume=342&rft.spage=458&rft.epage=473&rft.pages=458-473&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2018.02.094&rft_dat=%3Ccsuc_elsev%3Eoai_recercat_cat_2072_362720%3C/csuc_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1385894718303073&rfr_iscdi=true