Study of skin cancer lesions through multispectral and 3D techniques

The effective and non-invasive diagnosis of skin cancer is a hot topic in biophotonics since the current gold standard, biopsy followed by histological examination, is a slow and costly procedure for the healthcare system. Therefore, authors have put their efforts in characterizing skin cancer quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rey-Barroso, Laura, Burgos-Fernández, Francisco J, Ares, Miguel, Royo, Santiago, Delpueyo, Xana, Puig, Susana, Malvehy, Josep, Pellacani, Giovanni, Vilaseca, Meritxell
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110730B-5
container_issue
container_start_page 110730B
container_title
container_volume 11073
creator Rey-Barroso, Laura
Burgos-Fernández, Francisco J
Ares, Miguel
Royo, Santiago
Delpueyo, Xana
Puig, Susana
Malvehy, Josep
Pellacani, Giovanni
Vilaseca, Meritxell
description The effective and non-invasive diagnosis of skin cancer is a hot topic in biophotonics since the current gold standard, biopsy followed by histological examination, is a slow and costly procedure for the healthcare system. Therefore, authors have put their efforts in characterizing skin cancer quantitatively through optical and photonic techniques such as 3D topography and multispectral imaging. Skin relief is an important biophysical feature that can be difficult to appreciate by touch, but can be precisely characterized with 3D imaging techniques, such as fringe projection. Color and spectral features given by skin chromophores, which are routinely analyzed by the naked eye and through dermoscopy, can also be quantified by means of multispectral imaging systems. In this study, the outcomes of these two imaging modalities were combined in a machine learning process to enhance classification of melanomas and nevi obtained from the two systems when operating isolately. The results suggest that the combination of 3D and multispectral data is relevant for the medical diagnosis of skin cancer.
doi_str_mv 10.1117/12.2526970
format Conference Proceeding
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_361654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_361654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e060c53cd95a9997414f2ad1d3c3f0899953a8dd29bc627591b5d6cceca0d1f73</originalsourceid><addsrcrecordid>eNp1UMFKAzEQDahgqb34BTkL1UzSbDbHaq0KBQvVi5eQTrJtcN1dN1lEv96tLYgHD8Mwb957MzxCzoFdAoC6An7JJc-0YkdkpFUOEljGc6HVMRlAxuRYTTg_JaMYw5qJXGrFmRiQ2Sp17pPWBY2voaJoK_QtLX0MdRVp2rZ1t9nSt65MITYeU2tLaitHxYwmj9sqvHc-npGTwpbRjw59SJ7nt0839-PF493DzXQxxv5gGnuWMZQCnZZWa60mMCm4deAEioLlPSSFzZ3jeo0ZV1LDWroM0aNlDgolhgT2vhg7NK3vX0WbTG3D77ArzhQ3IoNMTnrNxV4Tm-BN09bovQvVJhpgZhedAW4O0fXkl3_Iy9XDanYHwJQwRVtXyXyEtC1Cn5T5Cs2f_bRNAUu_nM3ND8CuTeMK8Q11dX6d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study of skin cancer lesions through multispectral and 3D techniques</title><source>Recercat</source><creator>Rey-Barroso, Laura ; Burgos-Fernández, Francisco J ; Ares, Miguel ; Royo, Santiago ; Delpueyo, Xana ; Puig, Susana ; Malvehy, Josep ; Pellacani, Giovanni ; Vilaseca, Meritxell</creator><contributor>van Leeuwen, Ton G ; Brown, J. Quincy</contributor><creatorcontrib>Rey-Barroso, Laura ; Burgos-Fernández, Francisco J ; Ares, Miguel ; Royo, Santiago ; Delpueyo, Xana ; Puig, Susana ; Malvehy, Josep ; Pellacani, Giovanni ; Vilaseca, Meritxell ; van Leeuwen, Ton G ; Brown, J. Quincy</creatorcontrib><description>The effective and non-invasive diagnosis of skin cancer is a hot topic in biophotonics since the current gold standard, biopsy followed by histological examination, is a slow and costly procedure for the healthcare system. Therefore, authors have put their efforts in characterizing skin cancer quantitatively through optical and photonic techniques such as 3D topography and multispectral imaging. Skin relief is an important biophysical feature that can be difficult to appreciate by touch, but can be precisely characterized with 3D imaging techniques, such as fringe projection. Color and spectral features given by skin chromophores, which are routinely analyzed by the naked eye and through dermoscopy, can also be quantified by means of multispectral imaging systems. In this study, the outcomes of these two imaging modalities were combined in a machine learning process to enhance classification of melanomas and nevi obtained from the two systems when operating isolately. The results suggest that the combination of 3D and multispectral data is relevant for the medical diagnosis of skin cancer.</description><identifier>ISSN: 1605-7422</identifier><identifier>ISBN: 9781510628397</identifier><identifier>ISBN: 1510628398</identifier><identifier>DOI: 10.1117/12.2526970</identifier><language>eng</language><publisher>SPIE</publisher><subject>Aprenentatge automatic ; Cancer ; Ciències de la salut ; Càncer ; Dermatologia ; Diagnosis ; Diagnòstic ; Enginyeria de la telecomunicació ; Fringe projection ; Machine learning ; Medicina ; Multispectral imaging ; Pell ; Skin ; Skin cancer ; Surface morphology ; Telecomunicació òptica ; Àrees temàtiques de la UPC</subject><creationdate>2019</creationdate><rights>COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.</rights><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/361654$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><contributor>van Leeuwen, Ton G</contributor><contributor>Brown, J. Quincy</contributor><creatorcontrib>Rey-Barroso, Laura</creatorcontrib><creatorcontrib>Burgos-Fernández, Francisco J</creatorcontrib><creatorcontrib>Ares, Miguel</creatorcontrib><creatorcontrib>Royo, Santiago</creatorcontrib><creatorcontrib>Delpueyo, Xana</creatorcontrib><creatorcontrib>Puig, Susana</creatorcontrib><creatorcontrib>Malvehy, Josep</creatorcontrib><creatorcontrib>Pellacani, Giovanni</creatorcontrib><creatorcontrib>Vilaseca, Meritxell</creatorcontrib><title>Study of skin cancer lesions through multispectral and 3D techniques</title><description>The effective and non-invasive diagnosis of skin cancer is a hot topic in biophotonics since the current gold standard, biopsy followed by histological examination, is a slow and costly procedure for the healthcare system. Therefore, authors have put their efforts in characterizing skin cancer quantitatively through optical and photonic techniques such as 3D topography and multispectral imaging. Skin relief is an important biophysical feature that can be difficult to appreciate by touch, but can be precisely characterized with 3D imaging techniques, such as fringe projection. Color and spectral features given by skin chromophores, which are routinely analyzed by the naked eye and through dermoscopy, can also be quantified by means of multispectral imaging systems. In this study, the outcomes of these two imaging modalities were combined in a machine learning process to enhance classification of melanomas and nevi obtained from the two systems when operating isolately. The results suggest that the combination of 3D and multispectral data is relevant for the medical diagnosis of skin cancer.</description><subject>Aprenentatge automatic</subject><subject>Cancer</subject><subject>Ciències de la salut</subject><subject>Càncer</subject><subject>Dermatologia</subject><subject>Diagnosis</subject><subject>Diagnòstic</subject><subject>Enginyeria de la telecomunicació</subject><subject>Fringe projection</subject><subject>Machine learning</subject><subject>Medicina</subject><subject>Multispectral imaging</subject><subject>Pell</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>Surface morphology</subject><subject>Telecomunicació òptica</subject><subject>Àrees temàtiques de la UPC</subject><issn>1605-7422</issn><isbn>9781510628397</isbn><isbn>1510628398</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>XX2</sourceid><recordid>eNp1UMFKAzEQDahgqb34BTkL1UzSbDbHaq0KBQvVi5eQTrJtcN1dN1lEv96tLYgHD8Mwb957MzxCzoFdAoC6An7JJc-0YkdkpFUOEljGc6HVMRlAxuRYTTg_JaMYw5qJXGrFmRiQ2Sp17pPWBY2voaJoK_QtLX0MdRVp2rZ1t9nSt65MITYeU2tLaitHxYwmj9sqvHc-npGTwpbRjw59SJ7nt0839-PF493DzXQxxv5gGnuWMZQCnZZWa60mMCm4deAEioLlPSSFzZ3jeo0ZV1LDWroM0aNlDgolhgT2vhg7NK3vX0WbTG3D77ArzhQ3IoNMTnrNxV4Tm-BN09bovQvVJhpgZhedAW4O0fXkl3_Iy9XDanYHwJQwRVtXyXyEtC1Cn5T5Cs2f_bRNAUu_nM3ND8CuTeMK8Q11dX6d</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Rey-Barroso, Laura</creator><creator>Burgos-Fernández, Francisco J</creator><creator>Ares, Miguel</creator><creator>Royo, Santiago</creator><creator>Delpueyo, Xana</creator><creator>Puig, Susana</creator><creator>Malvehy, Josep</creator><creator>Pellacani, Giovanni</creator><creator>Vilaseca, Meritxell</creator><general>SPIE</general><general>International Society for Photo-Optical Instrumentation Engineers (SPIE)</general><scope>XX2</scope></search><sort><creationdate>20190719</creationdate><title>Study of skin cancer lesions through multispectral and 3D techniques</title><author>Rey-Barroso, Laura ; Burgos-Fernández, Francisco J ; Ares, Miguel ; Royo, Santiago ; Delpueyo, Xana ; Puig, Susana ; Malvehy, Josep ; Pellacani, Giovanni ; Vilaseca, Meritxell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e060c53cd95a9997414f2ad1d3c3f0899953a8dd29bc627591b5d6cceca0d1f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aprenentatge automatic</topic><topic>Cancer</topic><topic>Ciències de la salut</topic><topic>Càncer</topic><topic>Dermatologia</topic><topic>Diagnosis</topic><topic>Diagnòstic</topic><topic>Enginyeria de la telecomunicació</topic><topic>Fringe projection</topic><topic>Machine learning</topic><topic>Medicina</topic><topic>Multispectral imaging</topic><topic>Pell</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>Surface morphology</topic><topic>Telecomunicació òptica</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Rey-Barroso, Laura</creatorcontrib><creatorcontrib>Burgos-Fernández, Francisco J</creatorcontrib><creatorcontrib>Ares, Miguel</creatorcontrib><creatorcontrib>Royo, Santiago</creatorcontrib><creatorcontrib>Delpueyo, Xana</creatorcontrib><creatorcontrib>Puig, Susana</creatorcontrib><creatorcontrib>Malvehy, Josep</creatorcontrib><creatorcontrib>Pellacani, Giovanni</creatorcontrib><creatorcontrib>Vilaseca, Meritxell</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rey-Barroso, Laura</au><au>Burgos-Fernández, Francisco J</au><au>Ares, Miguel</au><au>Royo, Santiago</au><au>Delpueyo, Xana</au><au>Puig, Susana</au><au>Malvehy, Josep</au><au>Pellacani, Giovanni</au><au>Vilaseca, Meritxell</au><au>van Leeuwen, Ton G</au><au>Brown, J. Quincy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study of skin cancer lesions through multispectral and 3D techniques</atitle><date>2019-07-19</date><risdate>2019</risdate><volume>11073</volume><spage>110730B</spage><epage>110730B-5</epage><pages>110730B-110730B-5</pages><issn>1605-7422</issn><isbn>9781510628397</isbn><isbn>1510628398</isbn><abstract>The effective and non-invasive diagnosis of skin cancer is a hot topic in biophotonics since the current gold standard, biopsy followed by histological examination, is a slow and costly procedure for the healthcare system. Therefore, authors have put their efforts in characterizing skin cancer quantitatively through optical and photonic techniques such as 3D topography and multispectral imaging. Skin relief is an important biophysical feature that can be difficult to appreciate by touch, but can be precisely characterized with 3D imaging techniques, such as fringe projection. Color and spectral features given by skin chromophores, which are routinely analyzed by the naked eye and through dermoscopy, can also be quantified by means of multispectral imaging systems. In this study, the outcomes of these two imaging modalities were combined in a machine learning process to enhance classification of melanomas and nevi obtained from the two systems when operating isolately. The results suggest that the combination of 3D and multispectral data is relevant for the medical diagnosis of skin cancer.</abstract><pub>SPIE</pub><doi>10.1117/12.2526970</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1605-7422
ispartof
issn 1605-7422
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_361654
source Recercat
subjects Aprenentatge automatic
Cancer
Ciències de la salut
Càncer
Dermatologia
Diagnosis
Diagnòstic
Enginyeria de la telecomunicació
Fringe projection
Machine learning
Medicina
Multispectral imaging
Pell
Skin
Skin cancer
Surface morphology
Telecomunicació òptica
Àrees temàtiques de la UPC
title Study of skin cancer lesions through multispectral and 3D techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20of%20skin%20cancer%20lesions%20through%20multispectral%20and%203D%20techniques&rft.au=Rey-Barroso,%20Laura&rft.date=2019-07-19&rft.volume=11073&rft.spage=110730B&rft.epage=110730B-5&rft.pages=110730B-110730B-5&rft.issn=1605-7422&rft.isbn=9781510628397&rft.isbn_list=1510628398&rft_id=info:doi/10.1117/12.2526970&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_361654%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true