An Exploratory Multivariate Statistical Analysis to Assess Urban Diversity

Understanding diversity in complex urban systems is fundamental in facing current and future sustainability challenges. In this article, we apply an exploratory multivariate statistical analysis (i.e., Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)) to an urban system’s abstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-07, Vol.11 (14), p.3812
Hauptverfasser: Salazar-Llano, Lorena, Rosas-Casals, Marti, Ortego, Maria Isabel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 3812
container_title Sustainability
container_volume 11
creator Salazar-Llano, Lorena
Rosas-Casals, Marti
Ortego, Maria Isabel
description Understanding diversity in complex urban systems is fundamental in facing current and future sustainability challenges. In this article, we apply an exploratory multivariate statistical analysis (i.e., Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)) to an urban system’s abstraction of the city’s functioning. Specifically, we relate the environmental, economical, and social characters of the city in a multivariate system of indicators by collecting measurements of those variables at the district scale. Statistical methods are applied to reduce the dimensionality of the multivariate dataset, such that, hidden relationships between the districts of the city are exposed. The methodology has been mainly designed to display diversity, being understood as differentiated attributes of the districts in their dimensionally-reduced description, and to measure it with Euclidean distances. Differentiated characters and distinctive functions of districts are identifiable in the exploratory analysis of a case study of Barcelona (Spain). The distances allow for the identification of clustered districts, as well as those that are separated, exemplifying dissimilarity. Moreover, the temporal dependency of the dataset reveals information about the district’s differentiation or homogenization trends between 2003 and 2015.
doi_str_mv 10.3390/su11143812
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_359434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562174338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-113479d8b0818b8ad8cf308b4479b4a66e837224ca51d4a19fa0fe3f666c7cfb3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQXUTBor34Cxa8CdGdzCbZHEOtX1Q8aM_LZruBLbGpO5ti_r0pLdSBYd4M8x68x9gNiHvEUjxQDwASFaRnbJKKAhIQmTj_hy_ZlGgtxkKEEvIJe6s2fP67bbtgYhcG_t630e9M8CY6_hlN9BS9NS2vNqYdyBOPHa-IHBFfhtps-KPfuUA-DtfsojEtuelxXrHl0_xr9pIsPp5fZ9UisYhFTABQFuVK1UKBqpVZKdugULUcr7U0ee4UFmkqrclgJQ2UjRGNwybPc1vYpsYrBgddS73VwVkXrIm6M_607Ht0nWrMSoly5NweONvQ_fSOol53fRgtkU6zPIVCIqrx6-6oHDqi4Bq9Df7bhEGD0PuI9Sli_ANVFm17</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562174338</pqid></control><display><type>article</type><title>An Exploratory Multivariate Statistical Analysis to Assess Urban Diversity</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Salazar-Llano, Lorena ; Rosas-Casals, Marti ; Ortego, Maria Isabel</creator><creatorcontrib>Salazar-Llano, Lorena ; Rosas-Casals, Marti ; Ortego, Maria Isabel</creatorcontrib><description>Understanding diversity in complex urban systems is fundamental in facing current and future sustainability challenges. In this article, we apply an exploratory multivariate statistical analysis (i.e., Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)) to an urban system’s abstraction of the city’s functioning. Specifically, we relate the environmental, economical, and social characters of the city in a multivariate system of indicators by collecting measurements of those variables at the district scale. Statistical methods are applied to reduce the dimensionality of the multivariate dataset, such that, hidden relationships between the districts of the city are exposed. The methodology has been mainly designed to display diversity, being understood as differentiated attributes of the districts in their dimensionally-reduced description, and to measure it with Euclidean distances. Differentiated characters and distinctive functions of districts are identifiable in the exploratory analysis of a case study of Barcelona (Spain). The distances allow for the identification of clustered districts, as well as those that are separated, exemplifying dissimilarity. Moreover, the temporal dependency of the dataset reveals information about the district’s differentiation or homogenization trends between 2003 and 2015.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su11143812</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Barcelona ; Biodiversitat ; Biological diversity ; Biplot ; Cities ; Datasets ; Desenvolupament humà i sostenible ; Desenvolupament urbà sostenible ; Economic development ; Environmental indicators ; Euclidean geometry ; Factor analysis ; Indicadors ambientals ; Indicadors socials ; Multiple Factor Analysis (MFA) ; Multivariate analysis ; Multivariate statistical analysis ; Principal Component Analysis (PCA) ; Principal components analysis ; Statistical analysis ; Statistical methods ; Statistics ; Sustainability ; Sustainability indicators ; Sustainable urban development ; Trends ; Urban diversity ; Urban resilience ; Urban sustainability ; Àrees temàtiques de la UPC</subject><ispartof>Sustainability, 2019-07, Vol.11 (14), p.3812</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution 4.0 https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-113479d8b0818b8ad8cf308b4479b4a66e837224ca51d4a19fa0fe3f666c7cfb3</citedby><cites>FETCH-LOGICAL-c337t-113479d8b0818b8ad8cf308b4479b4a66e837224ca51d4a19fa0fe3f666c7cfb3</cites><orcidid>0000-0001-9437-9354 ; 0000-0002-5243-2601 ; 0000-0003-3478-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26974,27924,27925</link.rule.ids></links><search><creatorcontrib>Salazar-Llano, Lorena</creatorcontrib><creatorcontrib>Rosas-Casals, Marti</creatorcontrib><creatorcontrib>Ortego, Maria Isabel</creatorcontrib><title>An Exploratory Multivariate Statistical Analysis to Assess Urban Diversity</title><title>Sustainability</title><description>Understanding diversity in complex urban systems is fundamental in facing current and future sustainability challenges. In this article, we apply an exploratory multivariate statistical analysis (i.e., Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)) to an urban system’s abstraction of the city’s functioning. Specifically, we relate the environmental, economical, and social characters of the city in a multivariate system of indicators by collecting measurements of those variables at the district scale. Statistical methods are applied to reduce the dimensionality of the multivariate dataset, such that, hidden relationships between the districts of the city are exposed. The methodology has been mainly designed to display diversity, being understood as differentiated attributes of the districts in their dimensionally-reduced description, and to measure it with Euclidean distances. Differentiated characters and distinctive functions of districts are identifiable in the exploratory analysis of a case study of Barcelona (Spain). The distances allow for the identification of clustered districts, as well as those that are separated, exemplifying dissimilarity. Moreover, the temporal dependency of the dataset reveals information about the district’s differentiation or homogenization trends between 2003 and 2015.</description><subject>Adaptation</subject><subject>Barcelona</subject><subject>Biodiversitat</subject><subject>Biological diversity</subject><subject>Biplot</subject><subject>Cities</subject><subject>Datasets</subject><subject>Desenvolupament humà i sostenible</subject><subject>Desenvolupament urbà sostenible</subject><subject>Economic development</subject><subject>Environmental indicators</subject><subject>Euclidean geometry</subject><subject>Factor analysis</subject><subject>Indicadors ambientals</subject><subject>Indicadors socials</subject><subject>Multiple Factor Analysis (MFA)</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Principal Component Analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Sustainability</subject><subject>Sustainability indicators</subject><subject>Sustainable urban development</subject><subject>Trends</subject><subject>Urban diversity</subject><subject>Urban resilience</subject><subject>Urban sustainability</subject><subject>Àrees temàtiques de la UPC</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>XX2</sourceid><recordid>eNpNUE1Lw0AQXUTBor34Cxa8CdGdzCbZHEOtX1Q8aM_LZruBLbGpO5ti_r0pLdSBYd4M8x68x9gNiHvEUjxQDwASFaRnbJKKAhIQmTj_hy_ZlGgtxkKEEvIJe6s2fP67bbtgYhcG_t630e9M8CY6_hlN9BS9NS2vNqYdyBOPHa-IHBFfhtps-KPfuUA-DtfsojEtuelxXrHl0_xr9pIsPp5fZ9UisYhFTABQFuVK1UKBqpVZKdugULUcr7U0ee4UFmkqrclgJQ2UjRGNwybPc1vYpsYrBgddS73VwVkXrIm6M_607Ht0nWrMSoly5NweONvQ_fSOol53fRgtkU6zPIVCIqrx6-6oHDqi4Bq9Df7bhEGD0PuI9Sli_ANVFm17</recordid><startdate>20190711</startdate><enddate>20190711</enddate><creator>Salazar-Llano, Lorena</creator><creator>Rosas-Casals, Marti</creator><creator>Ortego, Maria Isabel</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-9437-9354</orcidid><orcidid>https://orcid.org/0000-0002-5243-2601</orcidid><orcidid>https://orcid.org/0000-0003-3478-9575</orcidid></search><sort><creationdate>20190711</creationdate><title>An Exploratory Multivariate Statistical Analysis to Assess Urban Diversity</title><author>Salazar-Llano, Lorena ; Rosas-Casals, Marti ; Ortego, Maria Isabel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-113479d8b0818b8ad8cf308b4479b4a66e837224ca51d4a19fa0fe3f666c7cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Barcelona</topic><topic>Biodiversitat</topic><topic>Biological diversity</topic><topic>Biplot</topic><topic>Cities</topic><topic>Datasets</topic><topic>Desenvolupament humà i sostenible</topic><topic>Desenvolupament urbà sostenible</topic><topic>Economic development</topic><topic>Environmental indicators</topic><topic>Euclidean geometry</topic><topic>Factor analysis</topic><topic>Indicadors ambientals</topic><topic>Indicadors socials</topic><topic>Multiple Factor Analysis (MFA)</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Principal Component Analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Sustainability</topic><topic>Sustainability indicators</topic><topic>Sustainable urban development</topic><topic>Trends</topic><topic>Urban diversity</topic><topic>Urban resilience</topic><topic>Urban sustainability</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar-Llano, Lorena</creatorcontrib><creatorcontrib>Rosas-Casals, Marti</creatorcontrib><creatorcontrib>Ortego, Maria Isabel</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Recercat</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar-Llano, Lorena</au><au>Rosas-Casals, Marti</au><au>Ortego, Maria Isabel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exploratory Multivariate Statistical Analysis to Assess Urban Diversity</atitle><jtitle>Sustainability</jtitle><date>2019-07-11</date><risdate>2019</risdate><volume>11</volume><issue>14</issue><spage>3812</spage><pages>3812-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Understanding diversity in complex urban systems is fundamental in facing current and future sustainability challenges. In this article, we apply an exploratory multivariate statistical analysis (i.e., Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)) to an urban system’s abstraction of the city’s functioning. Specifically, we relate the environmental, economical, and social characters of the city in a multivariate system of indicators by collecting measurements of those variables at the district scale. Statistical methods are applied to reduce the dimensionality of the multivariate dataset, such that, hidden relationships between the districts of the city are exposed. The methodology has been mainly designed to display diversity, being understood as differentiated attributes of the districts in their dimensionally-reduced description, and to measure it with Euclidean distances. Differentiated characters and distinctive functions of districts are identifiable in the exploratory analysis of a case study of Barcelona (Spain). The distances allow for the identification of clustered districts, as well as those that are separated, exemplifying dissimilarity. Moreover, the temporal dependency of the dataset reveals information about the district’s differentiation or homogenization trends between 2003 and 2015.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su11143812</doi><orcidid>https://orcid.org/0000-0001-9437-9354</orcidid><orcidid>https://orcid.org/0000-0002-5243-2601</orcidid><orcidid>https://orcid.org/0000-0003-3478-9575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2019-07, Vol.11 (14), p.3812
issn 2071-1050
2071-1050
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_359434
source MDPI - Multidisciplinary Digital Publishing Institute; Recercat; EZB-FREE-00999 freely available EZB journals
subjects Adaptation
Barcelona
Biodiversitat
Biological diversity
Biplot
Cities
Datasets
Desenvolupament humà i sostenible
Desenvolupament urbà sostenible
Economic development
Environmental indicators
Euclidean geometry
Factor analysis
Indicadors ambientals
Indicadors socials
Multiple Factor Analysis (MFA)
Multivariate analysis
Multivariate statistical analysis
Principal Component Analysis (PCA)
Principal components analysis
Statistical analysis
Statistical methods
Statistics
Sustainability
Sustainability indicators
Sustainable urban development
Trends
Urban diversity
Urban resilience
Urban sustainability
Àrees temàtiques de la UPC
title An Exploratory Multivariate Statistical Analysis to Assess Urban Diversity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exploratory%20Multivariate%20Statistical%20Analysis%20to%20Assess%20Urban%20Diversity&rft.jtitle=Sustainability&rft.au=Salazar-Llano,%20Lorena&rft.date=2019-07-11&rft.volume=11&rft.issue=14&rft.spage=3812&rft.pages=3812-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su11143812&rft_dat=%3Cproquest_csuc_%3E2562174338%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562174338&rft_id=info:pmid/&rfr_iscdi=true