Temperature effects explain continental scale distribution of cyanobacterial toxins

Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gomà Martínez, Joan, Trapote, Mari Carmen, Vegas Vilarrúbia, Teresa Elena, Obrador Sala, Biel, Hernández, Armand, Marcé Romero, Rafael, Catalán García, Núria
Format: Text Resource
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gomà Martínez, Joan
Trapote, Mari Carmen
Vegas Vilarrúbia, Teresa Elena
Obrador Sala, Biel
Hernández, Armand
Marcé Romero, Rafael
Catalán García, Núria
description Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
format Text Resource
fullrecord <record><control><sourceid>csuc</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_356200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_356200</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_3562003</originalsourceid><addsrcrecordid>eNqdTssKwjAQDKJg0f5DfqDQB23xLIp3ey_ruoGVmJRkC_XvbUHQswPDzMAMzEolZd6WWdPUxfrHb1Ua4yOfUVXFoWgTde3oOVAAGQNpMoZQoqZpsMBOo3fCjpyA1RHBkr5zlMC3Udg77Y3GFzh_AxQKPJfET-ziXm0M2EjpR3eqOJ-64yXDOGIfCCkgSO-Bv2HhcrOv6qac7_2zeQPBl03Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>text_resource</recordtype></control><display><type>text_resource</type><title>Temperature effects explain continental scale distribution of cyanobacterial toxins</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gomà Martínez, Joan ; Trapote, Mari Carmen ; Vegas Vilarrúbia, Teresa Elena ; Obrador Sala, Biel ; Hernández, Armand ; Marcé Romero, Rafael ; Catalán García, Núria</creator><creatorcontrib>Gomà Martínez, Joan ; Trapote, Mari Carmen ; Vegas Vilarrúbia, Teresa Elena ; Obrador Sala, Biel ; Hernández, Armand ; Marcé Romero, Rafael ; Catalán García, Núria</creatorcontrib><description>Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.</description><identifier>ISSN: 2072-6651</identifier><identifier>EISSN: 2072-6651</identifier><language>eng</language><subject>Bacterial toxins ; Canvis climàtics ; Climatic changes ; Toxines bacterianes</subject><creationdate>2018</creationdate><tpages>24</tpages><format>24</format><rights>cc by (c), 2018 info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es/"&gt;http://creativecommons.org/licenses/by/3.0/es/&lt;/a&gt;</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,784,885,26974</link.rule.ids></links><search><creatorcontrib>Gomà Martínez, Joan</creatorcontrib><creatorcontrib>Trapote, Mari Carmen</creatorcontrib><creatorcontrib>Vegas Vilarrúbia, Teresa Elena</creatorcontrib><creatorcontrib>Obrador Sala, Biel</creatorcontrib><creatorcontrib>Hernández, Armand</creatorcontrib><creatorcontrib>Marcé Romero, Rafael</creatorcontrib><creatorcontrib>Catalán García, Núria</creatorcontrib><title>Temperature effects explain continental scale distribution of cyanobacterial toxins</title><description>Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.</description><subject>Bacterial toxins</subject><subject>Canvis climàtics</subject><subject>Climatic changes</subject><subject>Toxines bacterianes</subject><issn>2072-6651</issn><issn>2072-6651</issn><fulltext>true</fulltext><rsrctype>text_resource</rsrctype><creationdate>2018</creationdate><recordtype>text_resource</recordtype><sourceid>XX2</sourceid><recordid>eNqdTssKwjAQDKJg0f5DfqDQB23xLIp3ey_ruoGVmJRkC_XvbUHQswPDzMAMzEolZd6WWdPUxfrHb1Ua4yOfUVXFoWgTde3oOVAAGQNpMoZQoqZpsMBOo3fCjpyA1RHBkr5zlMC3Udg77Y3GFzh_AxQKPJfET-ziXm0M2EjpR3eqOJ-64yXDOGIfCCkgSO-Bv2HhcrOv6qac7_2zeQPBl03Y</recordid><startdate>20180413</startdate><enddate>20180413</enddate><creator>Gomà Martínez, Joan</creator><creator>Trapote, Mari Carmen</creator><creator>Vegas Vilarrúbia, Teresa Elena</creator><creator>Obrador Sala, Biel</creator><creator>Hernández, Armand</creator><creator>Marcé Romero, Rafael</creator><creator>Catalán García, Núria</creator><scope>XX2</scope></search><sort><creationdate>20180413</creationdate><title>Temperature effects explain continental scale distribution of cyanobacterial toxins</title><author>Gomà Martínez, Joan ; Trapote, Mari Carmen ; Vegas Vilarrúbia, Teresa Elena ; Obrador Sala, Biel ; Hernández, Armand ; Marcé Romero, Rafael ; Catalán García, Núria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_3562003</frbrgroupid><rsrctype>text_resources</rsrctype><prefilter>text_resources</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial toxins</topic><topic>Canvis climàtics</topic><topic>Climatic changes</topic><topic>Toxines bacterianes</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomà Martínez, Joan</creatorcontrib><creatorcontrib>Trapote, Mari Carmen</creatorcontrib><creatorcontrib>Vegas Vilarrúbia, Teresa Elena</creatorcontrib><creatorcontrib>Obrador Sala, Biel</creatorcontrib><creatorcontrib>Hernández, Armand</creatorcontrib><creatorcontrib>Marcé Romero, Rafael</creatorcontrib><creatorcontrib>Catalán García, Núria</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomà Martínez, Joan</au><au>Trapote, Mari Carmen</au><au>Vegas Vilarrúbia, Teresa Elena</au><au>Obrador Sala, Biel</au><au>Hernández, Armand</au><au>Marcé Romero, Rafael</au><au>Catalán García, Núria</au><format>book</format><genre>document</genre><ristype>GEN</ristype><btitle>Temperature effects explain continental scale distribution of cyanobacterial toxins</btitle><date>2018-04-13</date><risdate>2018</risdate><issn>2072-6651</issn><eissn>2072-6651</eissn><abstract>Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.</abstract><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6651
ispartof
issn 2072-6651
2072-6651
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_356200
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Recercat; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacterial toxins
Canvis climàtics
Climatic changes
Toxines bacterianes
title Temperature effects explain continental scale distribution of cyanobacterial toxins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.btitle=Temperature%20effects%20explain%20continental%20scale%20distribution%20of%20cyanobacterial%20toxins&rft.au=Gom%C3%A0%20Mart%C3%ADnez,%20Joan&rft.date=2018-04-13&rft.issn=2072-6651&rft.eissn=2072-6651&rft_id=info:doi/&rft_dat=%3Ccsuc%3Eoai_recercat_cat_2072_356200%3C/csuc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true