An iterative biased‐randomized heuristic for the fleet size and mix vehicle‐routing problem with backhauls

This paper analyzes the fleet mixed vehicle‐routing problem with backhauls, a rich and realistic variant of the popular vehicle‐routing problem in which both delivery and pick‐up customers are served from a central depot using a heterogeneous and configurable fleet of vehicles. After a literature re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2019-01, Vol.26 (1), p.289-301
Hauptverfasser: Belloso, Javier, Juan, Angel A., Faulin, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 1
container_start_page 289
container_title International transactions in operational research
container_volume 26
creator Belloso, Javier
Juan, Angel A.
Faulin, Javier
description This paper analyzes the fleet mixed vehicle‐routing problem with backhauls, a rich and realistic variant of the popular vehicle‐routing problem in which both delivery and pick‐up customers are served from a central depot using a heterogeneous and configurable fleet of vehicles. After a literature review on the issue and a detailed description of the problem, a solution based on a multistart biased‐randomized heuristic is proposed. Our algorithm uses an iterative method that relies on solving a series of smaller instances of the homogeneous‐fleet version of the problem and then using these subsolutions as partial solutions for the original heterogeneous instance. In order to better guide the exploration of the solutions space, the algorithm employs several biased‐randomized processes: a first one for selecting a vehicle type; a second one for sorting the savings list; and a third one to define the number of routes that must be selected from the homogenous‐fleet subsolution. The computational experiments show that our approach is competitive and able to provide 20 new best‐known solutions for a 36‐instance benchmark recently proposed in the literature.
doi_str_mv 10.1111/itor.12379
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_350063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110287024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3439-5adc4987307b9207c4d97e115e86ac0b660cd80152cafde9ff25ea4fc0986b103</originalsourceid><addsrcrecordid>eNp9UdtKAzEQDaJgrb74BQHfhK2TveexFC-FQkH0OWSzs27qdrcm2Wp98hP8Rr_E1Bb65sAwDHPO4QyHkEsGI-brRrvOjFgYZfyIDFicJUHEeXJMBsBTHqTA0lNyZu0CAFjCsgFpxy3VDo10eo200NJi-fP1bWRbdkv9iSWtsTfaOq1o1RnqaqRVg-io9VfqYXSpP-gaa60a3DK73un2ha5MVzS4pO_a1bSQ6rWWfWPPyUklG4sX-zkkz3e3T5OHYDa_n07Gs0BFccSDRJYq5nkWQVbwEDIVlzxDxhLMU6mgSFNQZe5fCJWsSuRVFSYo40oBz9OCQTQkbKerbK-EQYVGSSc6qQ_Ltr12KKIEII0852rH8dbferROLLretN6mCBmDMM8gjD3qeq9sOmsNVmJl9FKajWAgthmIbQbiL4ODjXfd4OYfpJg-zR93nF_GDoz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110287024</pqid></control><display><type>article</type><title>An iterative biased‐randomized heuristic for the fleet size and mix vehicle‐routing problem with backhauls</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><source>Recercat</source><creator>Belloso, Javier ; Juan, Angel A. ; Faulin, Javier</creator><creatorcontrib>Belloso, Javier ; Juan, Angel A. ; Faulin, Javier</creatorcontrib><description>This paper analyzes the fleet mixed vehicle‐routing problem with backhauls, a rich and realistic variant of the popular vehicle‐routing problem in which both delivery and pick‐up customers are served from a central depot using a heterogeneous and configurable fleet of vehicles. After a literature review on the issue and a detailed description of the problem, a solution based on a multistart biased‐randomized heuristic is proposed. Our algorithm uses an iterative method that relies on solving a series of smaller instances of the homogeneous‐fleet version of the problem and then using these subsolutions as partial solutions for the original heterogeneous instance. In order to better guide the exploration of the solutions space, the algorithm employs several biased‐randomized processes: a first one for selecting a vehicle type; a second one for sorting the savings list; and a third one to define the number of routes that must be selected from the homogenous‐fleet subsolution. The computational experiments show that our approach is competitive and able to provide 20 new best‐known solutions for a 36‐instance benchmark recently proposed in the literature.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12379</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>aleatorització esbiaixada ; aleatorización sesgada ; Algorismes ; algorismes multistart ; Algorithms ; Algoritmos ; algoritmos multistart ; biased randomization ; fleet size and mix vehicle-routing problem ; heuristics ; heurística ; Iterative methods ; Literature reviews ; multistart algorithms ; Operations research ; Randomization ; resolució de problemes reals de flotes de vehicles capacitat ; resolución de problemas reales de flotas de vehículos capacitado ; Route planning ; Routing ; ruta para vehículos ; ruta per a vehicles ; Vehicle routing ; vehicle-routing problem with backhauls</subject><ispartof>International transactions in operational research, 2019-01, Vol.26 (1), p.289-301</ispartof><rights>2017 The Authors. International Transactions in Operational Research © 2017 International Federation of Operational Research Societies</rights><rights>2019 The Authors.</rights><rights>cc-by-nc-nd info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt; &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3439-5adc4987307b9207c4d97e115e86ac0b660cd80152cafde9ff25ea4fc0986b103</citedby><cites>FETCH-LOGICAL-c3439-5adc4987307b9207c4d97e115e86ac0b660cd80152cafde9ff25ea4fc0986b103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12379$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12379$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,26957,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Belloso, Javier</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Faulin, Javier</creatorcontrib><title>An iterative biased‐randomized heuristic for the fleet size and mix vehicle‐routing problem with backhauls</title><title>International transactions in operational research</title><description>This paper analyzes the fleet mixed vehicle‐routing problem with backhauls, a rich and realistic variant of the popular vehicle‐routing problem in which both delivery and pick‐up customers are served from a central depot using a heterogeneous and configurable fleet of vehicles. After a literature review on the issue and a detailed description of the problem, a solution based on a multistart biased‐randomized heuristic is proposed. Our algorithm uses an iterative method that relies on solving a series of smaller instances of the homogeneous‐fleet version of the problem and then using these subsolutions as partial solutions for the original heterogeneous instance. In order to better guide the exploration of the solutions space, the algorithm employs several biased‐randomized processes: a first one for selecting a vehicle type; a second one for sorting the savings list; and a third one to define the number of routes that must be selected from the homogenous‐fleet subsolution. The computational experiments show that our approach is competitive and able to provide 20 new best‐known solutions for a 36‐instance benchmark recently proposed in the literature.</description><subject>aleatorització esbiaixada</subject><subject>aleatorización sesgada</subject><subject>Algorismes</subject><subject>algorismes multistart</subject><subject>Algorithms</subject><subject>Algoritmos</subject><subject>algoritmos multistart</subject><subject>biased randomization</subject><subject>fleet size and mix vehicle-routing problem</subject><subject>heuristics</subject><subject>heurística</subject><subject>Iterative methods</subject><subject>Literature reviews</subject><subject>multistart algorithms</subject><subject>Operations research</subject><subject>Randomization</subject><subject>resolució de problemes reals de flotes de vehicles capacitat</subject><subject>resolución de problemas reales de flotas de vehículos capacitado</subject><subject>Route planning</subject><subject>Routing</subject><subject>ruta para vehículos</subject><subject>ruta per a vehicles</subject><subject>Vehicle routing</subject><subject>vehicle-routing problem with backhauls</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9UdtKAzEQDaJgrb74BQHfhK2TveexFC-FQkH0OWSzs27qdrcm2Wp98hP8Rr_E1Bb65sAwDHPO4QyHkEsGI-brRrvOjFgYZfyIDFicJUHEeXJMBsBTHqTA0lNyZu0CAFjCsgFpxy3VDo10eo200NJi-fP1bWRbdkv9iSWtsTfaOq1o1RnqaqRVg-io9VfqYXSpP-gaa60a3DK73un2ha5MVzS4pO_a1bSQ6rWWfWPPyUklG4sX-zkkz3e3T5OHYDa_n07Gs0BFccSDRJYq5nkWQVbwEDIVlzxDxhLMU6mgSFNQZe5fCJWsSuRVFSYo40oBz9OCQTQkbKerbK-EQYVGSSc6qQ_Ltr12KKIEII0852rH8dbferROLLretN6mCBmDMM8gjD3qeq9sOmsNVmJl9FKajWAgthmIbQbiL4ODjXfd4OYfpJg-zR93nF_GDoz4</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Belloso, Javier</creator><creator>Juan, Angel A.</creator><creator>Faulin, Javier</creator><general>Blackwell Publishing Ltd</general><general>International Transactions in Operational Research</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>201901</creationdate><title>An iterative biased‐randomized heuristic for the fleet size and mix vehicle‐routing problem with backhauls</title><author>Belloso, Javier ; Juan, Angel A. ; Faulin, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3439-5adc4987307b9207c4d97e115e86ac0b660cd80152cafde9ff25ea4fc0986b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>aleatorització esbiaixada</topic><topic>aleatorización sesgada</topic><topic>Algorismes</topic><topic>algorismes multistart</topic><topic>Algorithms</topic><topic>Algoritmos</topic><topic>algoritmos multistart</topic><topic>biased randomization</topic><topic>fleet size and mix vehicle-routing problem</topic><topic>heuristics</topic><topic>heurística</topic><topic>Iterative methods</topic><topic>Literature reviews</topic><topic>multistart algorithms</topic><topic>Operations research</topic><topic>Randomization</topic><topic>resolució de problemes reals de flotes de vehicles capacitat</topic><topic>resolución de problemas reales de flotas de vehículos capacitado</topic><topic>Route planning</topic><topic>Routing</topic><topic>ruta para vehículos</topic><topic>ruta per a vehicles</topic><topic>Vehicle routing</topic><topic>vehicle-routing problem with backhauls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belloso, Javier</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Faulin, Javier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belloso, Javier</au><au>Juan, Angel A.</au><au>Faulin, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An iterative biased‐randomized heuristic for the fleet size and mix vehicle‐routing problem with backhauls</atitle><jtitle>International transactions in operational research</jtitle><date>2019-01</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><spage>289</spage><epage>301</epage><pages>289-301</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>This paper analyzes the fleet mixed vehicle‐routing problem with backhauls, a rich and realistic variant of the popular vehicle‐routing problem in which both delivery and pick‐up customers are served from a central depot using a heterogeneous and configurable fleet of vehicles. After a literature review on the issue and a detailed description of the problem, a solution based on a multistart biased‐randomized heuristic is proposed. Our algorithm uses an iterative method that relies on solving a series of smaller instances of the homogeneous‐fleet version of the problem and then using these subsolutions as partial solutions for the original heterogeneous instance. In order to better guide the exploration of the solutions space, the algorithm employs several biased‐randomized processes: a first one for selecting a vehicle type; a second one for sorting the savings list; and a third one to define the number of routes that must be selected from the homogenous‐fleet subsolution. The computational experiments show that our approach is competitive and able to provide 20 new best‐known solutions for a 36‐instance benchmark recently proposed in the literature.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12379</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2019-01, Vol.26 (1), p.289-301
issn 0969-6016
1475-3995
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_350063
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete; Recercat
subjects aleatorització esbiaixada
aleatorización sesgada
Algorismes
algorismes multistart
Algorithms
Algoritmos
algoritmos multistart
biased randomization
fleet size and mix vehicle-routing problem
heuristics
heurística
Iterative methods
Literature reviews
multistart algorithms
Operations research
Randomization
resolució de problemes reals de flotes de vehicles capacitat
resolución de problemas reales de flotas de vehículos capacitado
Route planning
Routing
ruta para vehículos
ruta per a vehicles
Vehicle routing
vehicle-routing problem with backhauls
title An iterative biased‐randomized heuristic for the fleet size and mix vehicle‐routing problem with backhauls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20iterative%20biased%E2%80%90randomized%20heuristic%20for%20the%20fleet%20size%20and%20mix%20vehicle%E2%80%90routing%20problem%20with%20backhauls&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Belloso,%20Javier&rft.date=2019-01&rft.volume=26&rft.issue=1&rft.spage=289&rft.epage=301&rft.pages=289-301&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12379&rft_dat=%3Cproquest_csuc_%3E2110287024%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110287024&rft_id=info:pmid/&rfr_iscdi=true