Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem

This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence 2011-07, Vol.62 (3-4), p.299-315
Hauptverfasser: Guimarans, Daniel, Herrero, Rosa, Riera, Daniel, Juan, Angel A., Ramos, Juan José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 3-4
container_start_page 299
container_title Annals of mathematics and artificial intelligence
container_volume 62
creator Guimarans, Daniel
Herrero, Rosa
Riera, Daniel
Juan, Angel A.
Ramos, Juan José
description This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.
doi_str_mv 10.1007/s10472-011-9261-y
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_348900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918192721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxRtRcF39AN4CXm2tStLd6aMM_oOBXRb1GiqZdE-W7mRNMuJ8e9OMsF48FFUP6vco6jXNa4R3CDC8zwhy4C0gtiPvsT0_aa6wG0Q7yAGe1hmQt1xK8bx5kfM9AIy96q-a8y6uxgcfZvaQoiHjF5-Lt4yWOSZfjmt-y3Yx5JLIh8JuU5wTresGUDiwPVUZZk-B3bmFflPxMbASWY7LL8fK0bEf7ujt4thdPJUNqxZmcevL5tlES3av_vbr5vunj992X9r9zeevuw_71krA0ho7WG46M3aC206AmEg6Q84dDspwjh1HqazoD9PYKdmDUpaUEYbQgZociesGL742n6xOzrpkqehI_lFsxWHgWkg1AlTmzYWpP_l5crno-3hKoZ6p-YgKRz5w_Mc5xZyTm_RD8iuls0bQWyr6koquqegtFX2uDL8wue6G2aVH5_9DfwAme5KK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918192721</pqid></control><display><type>article</type><title>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</title><source>Springer Nature - Complete Springer Journals</source><source>Recercat</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Guimarans, Daniel ; Herrero, Rosa ; Riera, Daniel ; Juan, Angel A. ; Ramos, Juan José</creator><creatorcontrib>Guimarans, Daniel ; Herrero, Rosa ; Riera, Daniel ; Juan, Angel A. ; Ramos, Juan José</creatorcontrib><description>This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-011-9261-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorismes ; algorismes híbrids ; algorismes probabilístics ; Algorithms ; Algoritmos ; algoritmos híbridos ; algoritmos probabilísticos ; Artificial Intelligence ; búsqueda de vecindad variable ; cerca de veïnatge variable ; Complex Systems ; Computer Science ; hybrid algorithms ; Mathematics ; probabilistic algorithms ; problema de rutas de vehículos ; problema de rutes de vehicles ; Search process ; variable neighborhood search ; Vehicle routing ; vehicle routing problem</subject><ispartof>Annals of mathematics and artificial intelligence, 2011-07, Vol.62 (3-4), p.299-315</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>Springer Science+Business Media B.V. 2011.</rights><rights>(c) Author/s &amp; (c) Journal info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</citedby><cites>FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-011-9261-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918192721?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21368,26953,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Guimarans, Daniel</creatorcontrib><creatorcontrib>Herrero, Rosa</creatorcontrib><creatorcontrib>Riera, Daniel</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Ramos, Juan José</creatorcontrib><title>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.</description><subject>Algorismes</subject><subject>algorismes híbrids</subject><subject>algorismes probabilístics</subject><subject>Algorithms</subject><subject>Algoritmos</subject><subject>algoritmos híbridos</subject><subject>algoritmos probabilísticos</subject><subject>Artificial Intelligence</subject><subject>búsqueda de vecindad variable</subject><subject>cerca de veïnatge variable</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>hybrid algorithms</subject><subject>Mathematics</subject><subject>probabilistic algorithms</subject><subject>problema de rutas de vehículos</subject><subject>problema de rutes de vehicles</subject><subject>Search process</subject><subject>variable neighborhood search</subject><subject>Vehicle routing</subject><subject>vehicle routing problem</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><recordid>eNp1kU-LFDEQxRtRcF39AN4CXm2tStLd6aMM_oOBXRb1GiqZdE-W7mRNMuJ8e9OMsF48FFUP6vco6jXNa4R3CDC8zwhy4C0gtiPvsT0_aa6wG0Q7yAGe1hmQt1xK8bx5kfM9AIy96q-a8y6uxgcfZvaQoiHjF5-Lt4yWOSZfjmt-y3Yx5JLIh8JuU5wTresGUDiwPVUZZk-B3bmFflPxMbASWY7LL8fK0bEf7ujt4thdPJUNqxZmcevL5tlES3av_vbr5vunj992X9r9zeevuw_71krA0ho7WG46M3aC206AmEg6Q84dDspwjh1HqazoD9PYKdmDUpaUEYbQgZociesGL742n6xOzrpkqehI_lFsxWHgWkg1AlTmzYWpP_l5crno-3hKoZ6p-YgKRz5w_Mc5xZyTm_RD8iuls0bQWyr6koquqegtFX2uDL8wue6G2aVH5_9DfwAme5KK</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Guimarans, Daniel</creator><creator>Herrero, Rosa</creator><creator>Riera, Daniel</creator><creator>Juan, Angel A.</creator><creator>Ramos, Juan José</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Annals of Mathematics and Artificial Intelligence</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>XX2</scope></search><sort><creationdate>20110701</creationdate><title>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</title><author>Guimarans, Daniel ; Herrero, Rosa ; Riera, Daniel ; Juan, Angel A. ; Ramos, Juan José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorismes</topic><topic>algorismes híbrids</topic><topic>algorismes probabilístics</topic><topic>Algorithms</topic><topic>Algoritmos</topic><topic>algoritmos híbridos</topic><topic>algoritmos probabilísticos</topic><topic>Artificial Intelligence</topic><topic>búsqueda de vecindad variable</topic><topic>cerca de veïnatge variable</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>hybrid algorithms</topic><topic>Mathematics</topic><topic>probabilistic algorithms</topic><topic>problema de rutas de vehículos</topic><topic>problema de rutes de vehicles</topic><topic>Search process</topic><topic>variable neighborhood search</topic><topic>Vehicle routing</topic><topic>vehicle routing problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarans, Daniel</creatorcontrib><creatorcontrib>Herrero, Rosa</creatorcontrib><creatorcontrib>Riera, Daniel</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Ramos, Juan José</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Recercat</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarans, Daniel</au><au>Herrero, Rosa</au><au>Riera, Daniel</au><au>Juan, Angel A.</au><au>Ramos, Juan José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>62</volume><issue>3-4</issue><spage>299</spage><epage>315</epage><pages>299-315</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10472-011-9261-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1012-2443
ispartof Annals of mathematics and artificial intelligence, 2011-07, Vol.62 (3-4), p.299-315
issn 1012-2443
1573-7470
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_348900
source Springer Nature - Complete Springer Journals; Recercat; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorismes
algorismes híbrids
algorismes probabilístics
Algorithms
Algoritmos
algoritmos híbridos
algoritmos probabilísticos
Artificial Intelligence
búsqueda de vecindad variable
cerca de veïnatge variable
Complex Systems
Computer Science
hybrid algorithms
Mathematics
probabilistic algorithms
problema de rutas de vehículos
problema de rutes de vehicles
Search process
variable neighborhood search
Vehicle routing
vehicle routing problem
title Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20probabilistic%20algorithms,%20Constraint%20Programming%20and%20Lagrangian%20Relaxation%20to%20solve%20the%20Vehicle%20Routing%20Problem&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Guimarans,%20Daniel&rft.date=2011-07-01&rft.volume=62&rft.issue=3-4&rft.spage=299&rft.epage=315&rft.pages=299-315&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-011-9261-y&rft_dat=%3Cproquest_csuc_%3E2918192721%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918192721&rft_id=info:pmid/&rfr_iscdi=true