Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem
This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2011-07, Vol.62 (3-4), p.299-315 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | 3-4 |
container_start_page | 299 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 62 |
creator | Guimarans, Daniel Herrero, Rosa Riera, Daniel Juan, Angel A. Ramos, Juan José |
description | This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted. |
doi_str_mv | 10.1007/s10472-011-9261-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_348900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918192721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxRtRcF39AN4CXm2tStLd6aMM_oOBXRb1GiqZdE-W7mRNMuJ8e9OMsF48FFUP6vco6jXNa4R3CDC8zwhy4C0gtiPvsT0_aa6wG0Q7yAGe1hmQt1xK8bx5kfM9AIy96q-a8y6uxgcfZvaQoiHjF5-Lt4yWOSZfjmt-y3Yx5JLIh8JuU5wTresGUDiwPVUZZk-B3bmFflPxMbASWY7LL8fK0bEf7ujt4thdPJUNqxZmcevL5tlES3av_vbr5vunj992X9r9zeevuw_71krA0ho7WG46M3aC206AmEg6Q84dDspwjh1HqazoD9PYKdmDUpaUEYbQgZociesGL742n6xOzrpkqehI_lFsxWHgWkg1AlTmzYWpP_l5crno-3hKoZ6p-YgKRz5w_Mc5xZyTm_RD8iuls0bQWyr6koquqegtFX2uDL8wue6G2aVH5_9DfwAme5KK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918192721</pqid></control><display><type>article</type><title>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</title><source>Springer Nature - Complete Springer Journals</source><source>Recercat</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Guimarans, Daniel ; Herrero, Rosa ; Riera, Daniel ; Juan, Angel A. ; Ramos, Juan José</creator><creatorcontrib>Guimarans, Daniel ; Herrero, Rosa ; Riera, Daniel ; Juan, Angel A. ; Ramos, Juan José</creatorcontrib><description>This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-011-9261-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorismes ; algorismes híbrids ; algorismes probabilístics ; Algorithms ; Algoritmos ; algoritmos híbridos ; algoritmos probabilísticos ; Artificial Intelligence ; búsqueda de vecindad variable ; cerca de veïnatge variable ; Complex Systems ; Computer Science ; hybrid algorithms ; Mathematics ; probabilistic algorithms ; problema de rutas de vehículos ; problema de rutes de vehicles ; Search process ; variable neighborhood search ; Vehicle routing ; vehicle routing problem</subject><ispartof>Annals of mathematics and artificial intelligence, 2011-07, Vol.62 (3-4), p.299-315</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>Springer Science+Business Media B.V. 2011.</rights><rights>(c) Author/s & (c) Journal info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</citedby><cites>FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-011-9261-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918192721?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21368,26953,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Guimarans, Daniel</creatorcontrib><creatorcontrib>Herrero, Rosa</creatorcontrib><creatorcontrib>Riera, Daniel</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Ramos, Juan José</creatorcontrib><title>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.</description><subject>Algorismes</subject><subject>algorismes híbrids</subject><subject>algorismes probabilístics</subject><subject>Algorithms</subject><subject>Algoritmos</subject><subject>algoritmos híbridos</subject><subject>algoritmos probabilísticos</subject><subject>Artificial Intelligence</subject><subject>búsqueda de vecindad variable</subject><subject>cerca de veïnatge variable</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>hybrid algorithms</subject><subject>Mathematics</subject><subject>probabilistic algorithms</subject><subject>problema de rutas de vehículos</subject><subject>problema de rutes de vehicles</subject><subject>Search process</subject><subject>variable neighborhood search</subject><subject>Vehicle routing</subject><subject>vehicle routing problem</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><recordid>eNp1kU-LFDEQxRtRcF39AN4CXm2tStLd6aMM_oOBXRb1GiqZdE-W7mRNMuJ8e9OMsF48FFUP6vco6jXNa4R3CDC8zwhy4C0gtiPvsT0_aa6wG0Q7yAGe1hmQt1xK8bx5kfM9AIy96q-a8y6uxgcfZvaQoiHjF5-Lt4yWOSZfjmt-y3Yx5JLIh8JuU5wTresGUDiwPVUZZk-B3bmFflPxMbASWY7LL8fK0bEf7ujt4thdPJUNqxZmcevL5tlES3av_vbr5vunj992X9r9zeevuw_71krA0ho7WG46M3aC206AmEg6Q84dDspwjh1HqazoD9PYKdmDUpaUEYbQgZociesGL742n6xOzrpkqehI_lFsxWHgWkg1AlTmzYWpP_l5crno-3hKoZ6p-YgKRz5w_Mc5xZyTm_RD8iuls0bQWyr6koquqegtFX2uDL8wue6G2aVH5_9DfwAme5KK</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Guimarans, Daniel</creator><creator>Herrero, Rosa</creator><creator>Riera, Daniel</creator><creator>Juan, Angel A.</creator><creator>Ramos, Juan José</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Annals of Mathematics and Artificial Intelligence</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>XX2</scope></search><sort><creationdate>20110701</creationdate><title>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</title><author>Guimarans, Daniel ; Herrero, Rosa ; Riera, Daniel ; Juan, Angel A. ; Ramos, Juan José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-bc7c2b5b9532c5303fa4ebaeedd8b22152148c36df95846088ca8b3ba1e08fea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorismes</topic><topic>algorismes híbrids</topic><topic>algorismes probabilístics</topic><topic>Algorithms</topic><topic>Algoritmos</topic><topic>algoritmos híbridos</topic><topic>algoritmos probabilísticos</topic><topic>Artificial Intelligence</topic><topic>búsqueda de vecindad variable</topic><topic>cerca de veïnatge variable</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>hybrid algorithms</topic><topic>Mathematics</topic><topic>probabilistic algorithms</topic><topic>problema de rutas de vehículos</topic><topic>problema de rutes de vehicles</topic><topic>Search process</topic><topic>variable neighborhood search</topic><topic>Vehicle routing</topic><topic>vehicle routing problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarans, Daniel</creatorcontrib><creatorcontrib>Herrero, Rosa</creatorcontrib><creatorcontrib>Riera, Daniel</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Ramos, Juan José</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Recercat</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarans, Daniel</au><au>Herrero, Rosa</au><au>Riera, Daniel</au><au>Juan, Angel A.</au><au>Ramos, Juan José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>62</volume><issue>3-4</issue><spage>299</spage><epage>315</epage><pages>299-315</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10472-011-9261-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 2011-07, Vol.62 (3-4), p.299-315 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_348900 |
source | Springer Nature - Complete Springer Journals; Recercat; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorismes algorismes híbrids algorismes probabilístics Algorithms Algoritmos algoritmos híbridos algoritmos probabilísticos Artificial Intelligence búsqueda de vecindad variable cerca de veïnatge variable Complex Systems Computer Science hybrid algorithms Mathematics probabilistic algorithms problema de rutas de vehículos problema de rutes de vehicles Search process variable neighborhood search Vehicle routing vehicle routing problem |
title | Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20probabilistic%20algorithms,%20Constraint%20Programming%20and%20Lagrangian%20Relaxation%20to%20solve%20the%20Vehicle%20Routing%20Problem&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Guimarans,%20Daniel&rft.date=2011-07-01&rft.volume=62&rft.issue=3-4&rft.spage=299&rft.epage=315&rft.pages=299-315&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-011-9261-y&rft_dat=%3Cproquest_csuc_%3E2918192721%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918192721&rft_id=info:pmid/&rfr_iscdi=true |