On the solution of Lambert's problem by regularization
Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scienti...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2018-12, Vol.153, p.26-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | |
container_start_page | 26 |
container_title | Acta astronautica |
container_volume | 153 |
creator | De La Torre, D. Flores, R. Fantino, E. |
description | Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms.
•Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy & generality) with standard solvers. |
doi_str_mv | 10.1016/j.actaastro.2018.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_334890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576518306106</els_id><sourcerecordid>2166085558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvobLHjw1DppkjY9LotfsLAXPYc0nWpLt1mTVNBfb8ouepRhGObjPd48Qq4pZBRocddn2gStfXA2y4HKOM2AwglZUFlWaQ4MTskCoOKpKAtxTi687wGgzGW1IMV2TMI7Jt4OU-jsmNg22ehdjS7c-mTvbD3gLqm_Eodv06Bd963ns0ty1urB49WxLsnrw_3L-indbB-f16tNajjjIZUtUsFoqWM0ra6hbCrKoxRaS5ClMBxZqbGukPGWoiyYaCspOENhBDcVWxJ64DV-MsqhQWd0UFZ3f82ceXxHMcZlBRFzc8BE9R8T-qB6O7kxylQ5LQqQQggZr8ojs7PeO2zV3nU77b4UBTUbq3r1a6yajZ0X0diIXB2QGB__7NApbzocDTZd1BRUY7t_OX4A9auEWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166085558</pqid></control><display><type>article</type><title>On the solution of Lambert's problem by regularization</title><source>Elsevier ScienceDirect Journals</source><source>Recercat</source><creator>De La Torre, D. ; Flores, R. ; Fantino, E.</creator><creatorcontrib>De La Torre, D. ; Flores, R. ; Fantino, E.</creatorcontrib><description>Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms.
•Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy & generality) with standard solvers.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2018.10.010</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Aeronàutica i espai ; Aerospace engineering ; Algorithms ; Approximation ; Astrodinàmica ; Astrodynamics ; Astronomia i astrofísica ; Boundary value problems ; Celestial mechanics ; Convergence ; Física ; Lambert's problem ; Lambert'sproblem ; Levi-Civita regularization ; Mecànica celest ; Numerical methods ; Regularization ; Regularization methods ; Robustness (mathematics) ; Singularities ; State of the art ; Test procedures ; Two-body problem ; Two-bodyproblem ; Àrees temàtiques de la UPC ; Òrbites</subject><ispartof>Acta astronautica, 2018-12, Vol.153, p.26-38</ispartof><rights>2018 IAA</rights><rights>Copyright Elsevier BV Dec 2018</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</citedby><cites>FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</cites><orcidid>0000-0001-6027-9515 ; 0000-0001-7633-8567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2018.10.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,26955,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>De La Torre, D.</creatorcontrib><creatorcontrib>Flores, R.</creatorcontrib><creatorcontrib>Fantino, E.</creatorcontrib><title>On the solution of Lambert's problem by regularization</title><title>Acta astronautica</title><description>Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms.
•Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy & generality) with standard solvers.</description><subject>Aeronàutica i espai</subject><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Astrodinàmica</subject><subject>Astrodynamics</subject><subject>Astronomia i astrofísica</subject><subject>Boundary value problems</subject><subject>Celestial mechanics</subject><subject>Convergence</subject><subject>Física</subject><subject>Lambert's problem</subject><subject>Lambert'sproblem</subject><subject>Levi-Civita regularization</subject><subject>Mecànica celest</subject><subject>Numerical methods</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Robustness (mathematics)</subject><subject>Singularities</subject><subject>State of the art</subject><subject>Test procedures</subject><subject>Two-body problem</subject><subject>Two-bodyproblem</subject><subject>Àrees temàtiques de la UPC</subject><subject>Òrbites</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUE1LxDAQDaLguvobLHjw1DppkjY9LotfsLAXPYc0nWpLt1mTVNBfb8ouepRhGObjPd48Qq4pZBRocddn2gStfXA2y4HKOM2AwglZUFlWaQ4MTskCoOKpKAtxTi687wGgzGW1IMV2TMI7Jt4OU-jsmNg22ehdjS7c-mTvbD3gLqm_Eodv06Bd963ns0ty1urB49WxLsnrw_3L-indbB-f16tNajjjIZUtUsFoqWM0ra6hbCrKoxRaS5ClMBxZqbGukPGWoiyYaCspOENhBDcVWxJ64DV-MsqhQWd0UFZ3f82ceXxHMcZlBRFzc8BE9R8T-qB6O7kxylQ5LQqQQggZr8ojs7PeO2zV3nU77b4UBTUbq3r1a6yajZ0X0diIXB2QGB__7NApbzocDTZd1BRUY7t_OX4A9auEWQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>De La Torre, D.</creator><creator>Flores, R.</creator><creator>Fantino, E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-6027-9515</orcidid><orcidid>https://orcid.org/0000-0001-7633-8567</orcidid></search><sort><creationdate>201812</creationdate><title>On the solution of Lambert's problem by regularization</title><author>De La Torre, D. ; Flores, R. ; Fantino, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aeronàutica i espai</topic><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Astrodinàmica</topic><topic>Astrodynamics</topic><topic>Astronomia i astrofísica</topic><topic>Boundary value problems</topic><topic>Celestial mechanics</topic><topic>Convergence</topic><topic>Física</topic><topic>Lambert's problem</topic><topic>Lambert'sproblem</topic><topic>Levi-Civita regularization</topic><topic>Mecànica celest</topic><topic>Numerical methods</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Robustness (mathematics)</topic><topic>Singularities</topic><topic>State of the art</topic><topic>Test procedures</topic><topic>Two-body problem</topic><topic>Two-bodyproblem</topic><topic>Àrees temàtiques de la UPC</topic><topic>Òrbites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De La Torre, D.</creatorcontrib><creatorcontrib>Flores, R.</creatorcontrib><creatorcontrib>Fantino, E.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De La Torre, D.</au><au>Flores, R.</au><au>Fantino, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the solution of Lambert's problem by regularization</atitle><jtitle>Acta astronautica</jtitle><date>2018-12</date><risdate>2018</risdate><volume>153</volume><spage>26</spage><epage>38</epage><pages>26-38</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms.
•Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy & generality) with standard solvers.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2018.10.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6027-9515</orcidid><orcidid>https://orcid.org/0000-0001-7633-8567</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2018-12, Vol.153, p.26-38 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_334890 |
source | Elsevier ScienceDirect Journals; Recercat |
subjects | Aeronàutica i espai Aerospace engineering Algorithms Approximation Astrodinàmica Astrodynamics Astronomia i astrofísica Boundary value problems Celestial mechanics Convergence Física Lambert's problem Lambert'sproblem Levi-Civita regularization Mecànica celest Numerical methods Regularization Regularization methods Robustness (mathematics) Singularities State of the art Test procedures Two-body problem Two-bodyproblem Àrees temàtiques de la UPC Òrbites |
title | On the solution of Lambert's problem by regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20solution%20of%20Lambert's%20problem%20by%20regularization&rft.jtitle=Acta%20astronautica&rft.au=De%20La%20Torre,%20D.&rft.date=2018-12&rft.volume=153&rft.spage=26&rft.epage=38&rft.pages=26-38&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2018.10.010&rft_dat=%3Cproquest_csuc_%3E2166085558%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166085558&rft_id=info:pmid/&rft_els_id=S0094576518306106&rfr_iscdi=true |