On the solution of Lambert's problem by regularization

Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scienti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2018-12, Vol.153, p.26-38
Hauptverfasser: De La Torre, D., Flores, R., Fantino, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 26
container_title Acta astronautica
container_volume 153
creator De La Torre, D.
Flores, R.
Fantino, E.
description Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms. •Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy & generality) with standard solvers.
doi_str_mv 10.1016/j.actaastro.2018.10.010
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_334890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576518306106</els_id><sourcerecordid>2166085558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvobLHjw1DppkjY9LotfsLAXPYc0nWpLt1mTVNBfb8ouepRhGObjPd48Qq4pZBRocddn2gStfXA2y4HKOM2AwglZUFlWaQ4MTskCoOKpKAtxTi687wGgzGW1IMV2TMI7Jt4OU-jsmNg22ehdjS7c-mTvbD3gLqm_Eodv06Bd963ns0ty1urB49WxLsnrw_3L-indbB-f16tNajjjIZUtUsFoqWM0ra6hbCrKoxRaS5ClMBxZqbGukPGWoiyYaCspOENhBDcVWxJ64DV-MsqhQWd0UFZ3f82ceXxHMcZlBRFzc8BE9R8T-qB6O7kxylQ5LQqQQggZr8ojs7PeO2zV3nU77b4UBTUbq3r1a6yajZ0X0diIXB2QGB__7NApbzocDTZd1BRUY7t_OX4A9auEWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166085558</pqid></control><display><type>article</type><title>On the solution of Lambert's problem by regularization</title><source>Elsevier ScienceDirect Journals</source><source>Recercat</source><creator>De La Torre, D. ; Flores, R. ; Fantino, E.</creator><creatorcontrib>De La Torre, D. ; Flores, R. ; Fantino, E.</creatorcontrib><description>Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms. •Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy &amp; generality) with standard solvers.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2018.10.010</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Aeronàutica i espai ; Aerospace engineering ; Algorithms ; Approximation ; Astrodinàmica ; Astrodynamics ; Astronomia i astrofísica ; Boundary value problems ; Celestial mechanics ; Convergence ; Física ; Lambert's problem ; Lambert'sproblem ; Levi-Civita regularization ; Mecànica celest ; Numerical methods ; Regularization ; Regularization methods ; Robustness (mathematics) ; Singularities ; State of the art ; Test procedures ; Two-body problem ; Two-bodyproblem ; Àrees temàtiques de la UPC ; Òrbites</subject><ispartof>Acta astronautica, 2018-12, Vol.153, p.26-38</ispartof><rights>2018 IAA</rights><rights>Copyright Elsevier BV Dec 2018</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</citedby><cites>FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</cites><orcidid>0000-0001-6027-9515 ; 0000-0001-7633-8567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2018.10.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,26955,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>De La Torre, D.</creatorcontrib><creatorcontrib>Flores, R.</creatorcontrib><creatorcontrib>Fantino, E.</creatorcontrib><title>On the solution of Lambert's problem by regularization</title><title>Acta astronautica</title><description>Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms. •Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy &amp; generality) with standard solvers.</description><subject>Aeronàutica i espai</subject><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Astrodinàmica</subject><subject>Astrodynamics</subject><subject>Astronomia i astrofísica</subject><subject>Boundary value problems</subject><subject>Celestial mechanics</subject><subject>Convergence</subject><subject>Física</subject><subject>Lambert's problem</subject><subject>Lambert'sproblem</subject><subject>Levi-Civita regularization</subject><subject>Mecànica celest</subject><subject>Numerical methods</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Robustness (mathematics)</subject><subject>Singularities</subject><subject>State of the art</subject><subject>Test procedures</subject><subject>Two-body problem</subject><subject>Two-bodyproblem</subject><subject>Àrees temàtiques de la UPC</subject><subject>Òrbites</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUE1LxDAQDaLguvobLHjw1DppkjY9LotfsLAXPYc0nWpLt1mTVNBfb8ouepRhGObjPd48Qq4pZBRocddn2gStfXA2y4HKOM2AwglZUFlWaQ4MTskCoOKpKAtxTi687wGgzGW1IMV2TMI7Jt4OU-jsmNg22ehdjS7c-mTvbD3gLqm_Eodv06Bd963ns0ty1urB49WxLsnrw_3L-indbB-f16tNajjjIZUtUsFoqWM0ra6hbCrKoxRaS5ClMBxZqbGukPGWoiyYaCspOENhBDcVWxJ64DV-MsqhQWd0UFZ3f82ceXxHMcZlBRFzc8BE9R8T-qB6O7kxylQ5LQqQQggZr8ojs7PeO2zV3nU77b4UBTUbq3r1a6yajZ0X0diIXB2QGB__7NApbzocDTZd1BRUY7t_OX4A9auEWQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>De La Torre, D.</creator><creator>Flores, R.</creator><creator>Fantino, E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-6027-9515</orcidid><orcidid>https://orcid.org/0000-0001-7633-8567</orcidid></search><sort><creationdate>201812</creationdate><title>On the solution of Lambert's problem by regularization</title><author>De La Torre, D. ; Flores, R. ; Fantino, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-8fe15317a7a7dfab07d9140941b80875c4e37aeb9e34f1e8635f98543e5c54c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aeronàutica i espai</topic><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Astrodinàmica</topic><topic>Astrodynamics</topic><topic>Astronomia i astrofísica</topic><topic>Boundary value problems</topic><topic>Celestial mechanics</topic><topic>Convergence</topic><topic>Física</topic><topic>Lambert's problem</topic><topic>Lambert'sproblem</topic><topic>Levi-Civita regularization</topic><topic>Mecànica celest</topic><topic>Numerical methods</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Robustness (mathematics)</topic><topic>Singularities</topic><topic>State of the art</topic><topic>Test procedures</topic><topic>Two-body problem</topic><topic>Two-bodyproblem</topic><topic>Àrees temàtiques de la UPC</topic><topic>Òrbites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De La Torre, D.</creatorcontrib><creatorcontrib>Flores, R.</creatorcontrib><creatorcontrib>Fantino, E.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De La Torre, D.</au><au>Flores, R.</au><au>Fantino, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the solution of Lambert's problem by regularization</atitle><jtitle>Acta astronautica</jtitle><date>2018-12</date><risdate>2018</risdate><volume>153</volume><spage>26</spage><epage>38</epage><pages>26-38</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Lambert's problem is the two-point boundary-value problem resulting from a two-body orbital transfer between two position vectors in a given time. It lies at the very heart of several fundamental astrodynamics and space engineering problems and, as such, it has attracted the interest of scientists over centuries. In this work, we revisit the solution of Lambert's problem based on Levi-Civita regularization developed by Carles Simó in 1973. We offer an exhaustive derivation of the theory, including proofs of all the results and the formulae employed, and we extend the algorithm to deal with multi-revolution transfers. Then, after investigating a range of initial guess search techniques and testing different numerical methods to approximate the solution, we propose a procedure in which the initial guess is assigned very efficiently by querying a pre-defined interpolating table. Then, in order to achieve both speed and robustness, we combine Newton-Raphson with safety checks to avoid out of boundary deviations to approximate the solution. We validate the method through several tests and applications, and we assess its convergence and performance. The algorithm presents no singularities, converges in all realistic scenarios and its computational cost is comparable with state of the art algorithms. •Review of Lambert's solver by Levi-Civita regularization developed by C. Simo.•Extension to multi-revolution case.•Improved initial guesses for iterative procedure.•Applicable over entire solution domain, including degenerate cases.•Comparable performance (speed, accuracy &amp; generality) with standard solvers.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2018.10.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6027-9515</orcidid><orcidid>https://orcid.org/0000-0001-7633-8567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2018-12, Vol.153, p.26-38
issn 0094-5765
1879-2030
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_334890
source Elsevier ScienceDirect Journals; Recercat
subjects Aeronàutica i espai
Aerospace engineering
Algorithms
Approximation
Astrodinàmica
Astrodynamics
Astronomia i astrofísica
Boundary value problems
Celestial mechanics
Convergence
Física
Lambert's problem
Lambert'sproblem
Levi-Civita regularization
Mecànica celest
Numerical methods
Regularization
Regularization methods
Robustness (mathematics)
Singularities
State of the art
Test procedures
Two-body problem
Two-bodyproblem
Àrees temàtiques de la UPC
Òrbites
title On the solution of Lambert's problem by regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20solution%20of%20Lambert's%20problem%20by%20regularization&rft.jtitle=Acta%20astronautica&rft.au=De%20La%20Torre,%20D.&rft.date=2018-12&rft.volume=153&rft.spage=26&rft.epage=38&rft.pages=26-38&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2018.10.010&rft_dat=%3Cproquest_csuc_%3E2166085558%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166085558&rft_id=info:pmid/&rft_els_id=S0094576518306106&rfr_iscdi=true